Skip to main content
Log in

Novel Method of Characterization of Heart Disease Prediction Using Sequential Feature Selection-Based Ensemble Technique

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

The exact forecast of heart disease is necessary to proficiently treating cardiovascular patients before a heart failure happens. Assuming we talk about artificial intelligence (AI) techniques, can be accomplished utilizing an ideal AI model with rich medical services information on heart diseases. To begin with, the feature extraction technique, gradient boosting-based sequential feature selection (GBSFS) is applied to separate the significant number of features from coronary illness dataset to create important medical services information. Using machine learning algorithms like Decision tree (DT), Random forest (RF), Multilayer perceptron (MLP), Support vector machine (SVM), Extra tree (ET), Gradient boosting (GBC), Linear regression (LR), K-nearest neighbor (KNN), and stacking, a comparison model is created between dataset that include both all features and a significant number of features. With stacking, the proposed framework achieves test accuracy of 98.78 percent, which is higher than the existing frameworks and most notable in the marking model with 11 features. This outcome shows that our framework is more powerful for the expectation of coronary illness, in contrast with other cutting edge strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used in this article can be accessed via the link https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset?select=heart.csv at Kaggle archive.

References

  1. D.K. Bowles, M.H. Laughlin, Mechanism of beneficial effects of physical activity on atherosclerosis and coronary heart disease. J. Appl. Physiol. 111(1), 308–310 (2011)

    Article  CAS  Google Scholar 

  2. T.O. Filgueira, A. Castoldi, L.E.R. Santos, G.J. de Amorim, M.S. de Sousa Fernandes, W.D.L.D.N. Anastácio et al., The relevance of a physical active lifestyle and physical fitness on immune defense: mitigating disease burden, with focus on COVID-19 consequences. Front. Immunol. 12, 150 (2021)

    Article  Google Scholar 

  3. S. Singla, S. Sathe, P.N. Chowdhury, S. Mishra, D. Kumar, M. Pawar, Data analysis and classification of cardiovascular disease and risk factors associated with it in India, in Advanced Computational Intelligence Techniques for Virtual Reality in Healthcare. (Springer, Cham, 2020), pp.211–232

    Chapter  Google Scholar 

  4. Bhatia, M., & Motwani, D. (2020). Use of Ensemblers Learning for Prediction of Heart Disease. In: 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI) (48184) (pp. 1016–1023). IEEE.

  5. P.J. Tully, R.A. Baker, J.L. Knight, Anxiety and depression as risk factors for mortality after coronary artery bypass surgery. J. Psychosom. Res. 64(3), 285–290 (2008)

    Article  Google Scholar 

  6. R.G. Smith, J. Eckroth, Building AI applications: yesterday, today, and tomorrow. AI Mag. 38(1), 6–22 (2017)

    Google Scholar 

  7. J.C. Harris, M. Hrmova, S. Lopato, P. Langridge, Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol. 190(4), 823–837 (2011)

    Article  CAS  Google Scholar 

  8. M.J. Iqbal, Z. Javed, H. Sadia, I.A. Qureshi, A. Irshad, R. Ahmed et al., Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 21(1), 1–11 (2021)

    Article  Google Scholar 

  9. A. Clark, J. Toribio, Magic words: how language augments hum an computation, in Language and Meaning in Cognitive Science. (Routledge, Milton Park, 2012), pp.33–51

    Chapter  Google Scholar 

  10. P. Pattnayak, A.R. Panda, Innovation on machine learning in healthcare services—An introduction, in Technical Advancements of Machine Learning in Healthcare. (Springer, Singapore, 2021), pp.1–30

    Google Scholar 

  11. A.M. Rahmani, E. Yousefpoor, M.S. Yousefpoor, Z. Mehmood, A. Haider, M. Hosseinzadeh, R. Ali Naqvi, Machine learning (ML) in medicine: review, applications, and challenges. Mathematics 9(22), 2970 (2021)

    Article  Google Scholar 

  12. R. Iniesta, D. Stahl, P. McGuffin, Machine learning, statistical learning and the future of biological research in psychiatry. Psychol. Med. 46(12), 2455–2465 (2016)

    Article  CAS  Google Scholar 

  13. A. Ozcift, A. Gulten, Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput. Methods Progr. Biomed. 104(3), 443–451 (2011)

    Article  Google Scholar 

  14. Lv, J., Zhang, X., Han, X., & Fu, Y. (2007). A novel adaptively dynamic tuning of the contention window (CW) for distributed coordination function in IEEE 802.11 ad hoc networks. In 2007 International Conference on Convergence Information Technology (ICCIT 2007) (pp. 290–294). IEEE.

  15. S. Muthukaruppan, M.J. Er, A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease. Expert Syst. Appl. 39(14), 11657–11665 (2012)

    Article  Google Scholar 

  16. A. Khazaee, Heart beat classification using particle swarm optimization. Int. J. Intell. Syst. Appl. 5(6), 25 (2013)

    Google Scholar 

  17. J. Nahar, T. Imam, K.S. Tickle, Y.P.P. Chen, Computational intelligence for heart disease diagnosis: a medical knowledge driven approach. Expert Syst. Appl. 40(1), 96–104 (2013)

    Article  Google Scholar 

  18. Y. Muhammad, M. Tahir, M. Hayat, K.T. Chong, Early and accurate detection and diagnosis of heart disease using intelligent computational model. Sci. Rep. 10(1), 1–17 (2020)

    Article  CAS  Google Scholar 

  19. R. Alizadehsani, J. Habibi, Z.A. Sani, H. Mashayekhi, R. Boghrati, A. Ghandeharioun et al., Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features. Res. Cardiovasc. Med. 2(3), 133 (2013)

    Article  Google Scholar 

  20. R. Alizadehsani, M.H. Zangooei, M.J. Hosseini, J. Habibi, A. Khosravi, M. Roshanzamir et al., Coronary artery disease detection using computational intelligence methods. Knowl.-Based Syst. 109, 187–197 (2016)

    Article  Google Scholar 

  21. N. Al-Milli, Backpropogation neural network for prediction of heart disease. J. Theor. Appl. Inf. Technol. 56(1), 131–135 (2013)

    Google Scholar 

  22. L. Verma, S. Srivastava, P.C. Negi, A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data. J. Med. Syst. 40(7), 1–7 (2016)

    Article  Google Scholar 

  23. C.J. Qin, Q. Guan, X.P. Wang, Application of ensemble algorithm integrating multiple criteria feature selection in coronary heart disease detection. Biomed. Eng.: Appl., Basis Commun. 29(06), 1750043 (2017)

    Google Scholar 

  24. M. Nilashi, H. Ahmadi, A.A. Manaf, T.A. Rashid, S. Samad, L. Shahmoradi et al., Coronary heart disease diagnosis through self-organizing map and fuzzy support vector machine with incremental updates. Int. J. Fuzzy Syst. 22(4), 1376–1388 (2020)

    Article  Google Scholar 

  25. Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, A.A. Yarifard, Computer aided decision making for heart disease detection using hybrid neural network-genetic algorithm. Comput. Methods Progr. Biomed. 141, 19–26 (2017)

    Article  Google Scholar 

  26. E.O. Olaniyi, O.K. Oyedotun, K. Adnan, Heart diseases diagnosis using neural networks arbitration. Int. J. Intell. Syst. Appl. 7(12), 75–82 (2015)

    Google Scholar 

  27. A.U. Haq, J.P. Li, M.H. Memon, S. Nazir, R. Sun, A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms. Mob. Inf. Syst. (2018). https://doi.org/10.1155/2018/3860146

    Article  Google Scholar 

  28. A.K. Dwivedi, Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Comput. Appl. 29(10), 685–693 (2018)

    Article  Google Scholar 

  29. R. Das, I. Turkoglu, A. Sengur, Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 36(4), 7675–7680 (2009)

    Article  Google Scholar 

  30. A. Dutta, T. Batabyal, M. Basu, S.T. Acton, An efficient convolutional neural network for coronary heart disease prediction. Expert Syst. Appl. 159, 113408 (2020)

    Article  Google Scholar 

  31. M.A. Jabbar, B.L. Deekshatulu, P. Chandra, Classification of heart disease using artificial neural network and feature subset selection. Glob. J. Comput. Sci. Technol. Neural Artif. Intell. 13(3), 4–8 (2013)

    Google Scholar 

  32. O.W. Samuel, G.M. Asogbon, A.K. Sangaiah, P. Fang, G. Li, An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction. Expert Syst. Appl. 68, 163–172 (2017)

    Article  Google Scholar 

  33. K. Raza, Improving the prediction accuracy of heart disease with ensemble learning and majority voting rule, in U-Healthcare Monitoring Systems. (Academic Press, Cambridge, 2019), pp.179–196

    Google Scholar 

  34. M.S. Amin, Y.K. Chiam, K.D. Varathan, Identification of significant features and data mining techniques in predicting heart disease. Telemat. Inform. 36, 82–93 (2019)

    Article  Google Scholar 

  35. S. Mohan, C. Thirumalai, G. Srivastava, Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 7, 81542–81554 (2019)

    Article  Google Scholar 

  36. V. Chaurasia, S. Pal, An ensemble framework-stacking and feature selection technique for detection of breast cancer. Int. J. Med. Eng. Inform. 14(3), 240–251 (2022)

    Google Scholar 

  37. https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset?select=heart.csv Access on 13/05/2022

  38. S. Alfiero, V. Brescia, F. Bert, Intellectual capital-based performance improvement: a study in healthcare sector. BMC Health Serv. Res. 21(1), 1–15 (2021)

    Google Scholar 

  39. V. Chaurasia, S. Pal, Ensemble technique to predict breast cancer on multiple datasets. Comput. J. (2021). https://doi.org/10.1093/comjnl/bxab110

    Article  Google Scholar 

  40. G. Theodorakopoulos, J.S. Baras, On trust models and trust evaluation metrics for ad hoc networks. IEEE J. Sel. Areas Commun. 24(2), 318–328 (2006)

    Article  Google Scholar 

  41. G. Forman, M. Scholz, Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. ACM SIGKDD Explor. Newsl. 12(1), 49–57 (2010)

    Article  Google Scholar 

  42. Li, Y., Lin, S., Zhang, B., Liu, J., Doermann, D., Wu, Y., et al. (2019) Exploiting kernel sparsity and entropy for interpretable CNN compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2800–2809).

  43. K.M. Mendez, S.N. Reinke, D.I. Broadhurst, A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Metabolomics 15(12), 1–15 (2019)

    Article  Google Scholar 

  44. T. Lombardo, M. Duquesnoy, H. El-Bouysidy, F. Årén, A. Gallo-Bueno, P.B. Jørgensen, et al., Artificial intelligence applied to battery research: hype or reality? Chem. Rev. https://doi.org/10.1021/acs.chemrev.1c00108

  45. S.P. Patro, N. Padhy, D. Chiranjevi, Ambient assisted living predictive model for cardiovascular disease prediction using supervised learning. Evol. Intel. 14(2), 941–969 (2021)

    Article  Google Scholar 

  46. L.F. de Almeida, J.W. Bizarria, F.C. Bizarria, M.H. Mathias, Condition-based monitoring system for rolling element bearing using a generic multi-layer perceptron. J. Vib. Control 21(16), 3456–3464 (2015)

    Article  Google Scholar 

  47. G.B. Goh, N.O. Hodas, A. Vishnu, Deep learning for computational chemistry. J. Comput. Chem. 38(16), 1291–1307 (2017)

    Article  CAS  Google Scholar 

  48. G. Indra, Applicability of Svm & Narx for prediction alayis of flood in humid and semi-humid regions. Ann. Rom. Soc. Cell Biol. 25(6), 6282–6293 (2021)

    Google Scholar 

  49. S. Ramakrishnan, Cryptographic and Information Security Approaches for Images and Videos (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  50. W.H. Greene, D.A. Hensher, A latent class model for discrete choice analysis: contrasts with mixed logit. Transp. Res. B: Methodol. 37(8), 681–698 (2003)

    Article  Google Scholar 

  51. J. Haworth, T. Cheng, Non-parametric regression for space–time forecasting under missing data. Comput. Environ. Urban Syst. 36(6), 538–550 (2012)

    Article  Google Scholar 

  52. T. Jiang, J.P. Li, A.U. Haq, A. Saboor, A. Ali, A novel stacking approach for accurate detection of fake news. IEEE Access 9, 22626–22639 (2021)

    Article  Google Scholar 

  53. P. Rani, R. Kumar, N.M. Ahmed, A. Jain, A decision support system for heart disease prediction based upon machine learning. J. Reliab. Intell. Environ. 7(3), 263–275 (2021)

    Article  Google Scholar 

  54. N.L. Fitriyani, M. Syafrudin, G. Alfian, J. Rhee, HDPM: an effective heart disease prediction model for a clinical decision support system. IEEE Access 8, 133034–133050 (2020)

    Article  Google Scholar 

  55. L. Ali, A. Niamat, J.A. Khan, N.A. Golilarz, X. Xingzhong, A. Noor et al., An optimized stacked support vector machines based expert system for the effective prediction of heart failure. IEEE Access 7, 54007–54014 (2019)

    Article  Google Scholar 

  56. L. Rasmy, Y. Wu, N. Wang, X. Geng, W.J. Zheng, F. Wang et al., A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. J. Biomed. Inform. 84, 11–16 (2018)

    Article  Google Scholar 

  57. R. Zhang, S. Ma, L. Shanahan, J. Munroe, S. Horn, S. Speedie, Discovering and identifying New York heart association classification from electronic health records. BMC Med. Inform. Decis. Mak. 18(2), 5–13 (2018)

    Google Scholar 

  58. J.J. Nirschl, A. Janowczyk, E.G. Peyster, R. Frank, K.B. Margulies, M.D. Feldman, A. Madabhushi, A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue. PLoS ONE 13(4), e0192726 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Chaurasia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasia, V., Chaurasia, A. Novel Method of Characterization of Heart Disease Prediction Using Sequential Feature Selection-Based Ensemble Technique. Biomedical Materials & Devices 1, 932–941 (2023). https://doi.org/10.1007/s44174-022-00060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00060-x

Keywords

Navigation