Skip to main content
Log in

Flexible, Implantable, Pulse Oximetry Sensors: Toward Long-Term Monitoring of Blood Oxygen Saturations

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Pulse oximetry is the most widespread method of monitoring heart rate and blood oxygen levels in both clinical and non-clinical settings. Current devices are ridged, bulky, and suitable only for short-term use. While the next generation of devices are moving toward wearable technologies, this focus on being unobtrusive is insufficient. To enable continuous high quality long-term monitoring, implanted devices are required. These will eliminate interference from light and sensitivity to skin pigmentation, allow enhanced performance during movement, and have no concerns around percussive damage. Here, an inexpensive, ultra-flexible pulse oximetry probe is demonstrated. The hybrid devices are fabricated on 5 µm Parylene C using laser ablation to define the circuit, and integrate small, rigid optoelectronic components. These are demonstrated in vivo on anesthetized pigs. Both transmission mode, and the novel reflection mode, are shown to be effective geometries for this. The heart rate measured by these devices shows < 2% variance from concurrent peripheral pulse oximetry measurements, along with an average variance of around 2.5% attributed predominantly to differences between central and peripheral oxygen saturations. In addition, it is shown that when implemented directly on the femoral artery, these devices record a more acute response to the variation in oxygen intake compared to the peripheral measurements. Finally, the same devices are shown to have the potential for use in monitoring venous oxygen content. This could open up the possibility of continuous monitoring of arteriovenous oxygen difference. These devices are straightforward to produce, biocompatible, and can be easily implanted during cardiovascular surgery, offering a route toward long-term implantation for continuous patient monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Jubran, Pulse oximetry. Crit. Care. 19(1), 272 (2015). https://doi.org/10.1186/s13054-015-0984-8

    Article  Google Scholar 

  2. M.T. Petterson, V.L. Begnoche, J.M. Graybeal, The effect of motion on pulse oximetry and its clinical significance. Anesth. Analg 105(6), S78–S84 (2007). https://doi.org/10.1213/01.ane.0000278134.47777.a5

    Article  Google Scholar 

  3. T.D. Brooks, D.A. Paulus, W.E. Winkle, Infrared heat lamps interfere with pulse oximeters. Anesthesiology 61(5), 630–630 (1984). https://doi.org/10.1097/00000542-198411000-00042

    Article  CAS  Google Scholar 

  4. J.R. Feiner, J.W. Severinghaus, P.E. Bickler, Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender. Anesth. Analg. 105(6), S18–S23 (2007). https://doi.org/10.1213/01.ane.0000285988.35174.d9

    Article  Google Scholar 

  5. P.E. Bickler, J.R. Feiner, J.W. Severinghaus, Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology 102(4), 715–719 (2005). https://doi.org/10.1097/00000542-200504000-00004

    Article  Google Scholar 

  6. M.W. Sjoding, R.P. Dickson, T.J. Iwashyna, S.E. Gay, T.S. Valley, Racial bias in pulse oximetry measurement. N. Engl. J. Med. 383(25), 2477–2478 (2020). https://doi.org/10.1056/nejmc2029240

    Article  Google Scholar 

  7. M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, M. Wolf, Photonic textiles for pulse oximetry. Opt. Express 16(17), 12973 (2008). https://doi.org/10.1364/oe.16.012973

    Article  CAS  Google Scholar 

  8. C.M. Lochner, Y. Khan, A. Pierre, A.C. Arias, All organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1038/ncomms6745

    Article  CAS  Google Scholar 

  9. Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366

    Article  CAS  Google Scholar 

  10. J. Kim, P. Gutruf, A.M. Chiarelli, S.Y. Heo, K. Cho, Z. Xie et al., Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Func. Mater. 27(1), 1–8 (2017). https://doi.org/10.1002/adfm.201604373

    Article  CAS  Google Scholar 

  11. Y. Khan, D. Han, A. Pierre, J. Ting, X. Wang, C.M. Lochner et al., A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. USA 115(47), E11015–E11024 (2018). https://doi.org/10.1073/pnas.1813053115

    Article  CAS  Google Scholar 

  12. S. Biswas, Y. Shao, T. Hachisu, T. Nguyen-Dang, Y. Visell, Integrated soft optoelectronics for wearable health monitoring. Adv. Mater. Technol. 5(8), 1–9 (2020). https://doi.org/10.1002/admt.202000347

    Article  Google Scholar 

  13. D. Han, Y. Khan, J. Ting, J. Zhu, C. Combe, A. Wadsworth et al., Pulse oximetry using organic optoelectronics under ambient light. Adv. Mater. Technol. 5(5), 1–9 (2020). https://doi.org/10.1002/admt.201901122

    Article  CAS  Google Scholar 

  14. L.Z. Pipek, R.F.V. Nascimento, M.M.P. Acencio, L.R. Teixeira, Comparison of SpO2 and heart rate values on Apple Watch and conventional commercial oximeters devices in patients with lung disease. Sci. Rep. 11(1), 1–7 (2021). https://doi.org/10.1038/s41598-021-98453-3

    Article  CAS  Google Scholar 

  15. I. Lee, N. Park, H. Lee, C. Hwang, J.H. Kim, S. Park, Systematic review on human skin-compatible wearable photoplethysmography sensors. Appl. Sci. 3(11), 2313 (2021). https://doi.org/10.3390/app11052313

    Article  CAS  Google Scholar 

  16. M.M. Kmiec, D. Tse, J.M. Mast, R. Ahmad, P. Kuppusamy, Implantable microchip containing oxygen-sensing paramagnetic crystals for long-term, repeated, and multisite in vivo oximetry. Biomed. Microdevice 9(21), 71 (2019). https://doi.org/10.1007/s10544-019-0421-x

    Article  CAS  Google Scholar 

  17. E.Y. Chen, D. Tse, H. Hou, W.A. Schreiber, P.E. Schaner, M.M. Kmiec et al., Evaluation of a refined implantable resonator for deep-tissue EPR oximetry in the clinic. Appl. Magn. Reson. 10(52), 1321–1342 (2021). https://doi.org/10.1007/s00723-021-01376-5

    Article  CAS  Google Scholar 

  18. H.H. Asada, P. Shaltis, A. Reisner, R. Sokwoo, R.C. Hutchinson, Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Eng. Med. Biol. Magaz. 22(3), 28–40 (2003). https://doi.org/10.1109/MEMB.2003.1213624

    Article  Google Scholar 

  19. P. Bingger, J. Fiala, A. Seifert, N. Weber, K. Foerster, C. Heilmann, et al., In vivo monitoring of blood oxygenation using an implantable MEMS-based sensor. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 1031–1034 (2010). https://doi.org/10.1109/MEMSYS.2010.5442385

  20. M. Chushkin, L. Popova, E. Shergina, E. Krasnikova, O. Gordeeva, N. Karpina, Comparative analysis of the arterial oxygen saturation (SaO2) and pulse oximetry measurements (SpO2) in patients with pulmonary tuberculosis. Eur Resp So. (2020). https://doi.org/10.1183/13993003.congress-2020.3209

    Article  Google Scholar 

  21. M. Thijssen, L. Janssen, J. le Noble, N. Foudraine, Facing SpO2 and SaO2 discrepancies in ICU patients: is the perfusion index helpful? J Clin Monitor Compu. 34(4), 693–698 (2020). https://doi.org/10.1007/s10877-019-00371-3

    Article  Google Scholar 

  22. D. Journois, D. Safran, Monitorage continu de la saturation du sang veineux meleen oxygene. Annales Francaises d’Anesthesie et de Reanimation. 12(4), 393–408 (1993). https://doi.org/10.1016/S0750-7658(05)80107-8

    Article  CAS  Google Scholar 

  23. S. Nebout, R. Pirracchio, Should we monitor ScVO2 in critically Ill patients? Cardiol. Res. Practice. 2012, 1–7 (2012). https://doi.org/10.1155/2012/370697

    Article  Google Scholar 

  24. M. Khan, C.G. Pretty, A.C. Amies, J. Balmer, H.E. Banna, G.M. Shaw et al., Proof of concept non-invasive estimation of peripheral venous oxygen saturation. Biomed. Eng. Online 16(1), 1–16 (2017). https://doi.org/10.1186/s12938-017-0351-x

    Article  CAS  Google Scholar 

  25. C.S. Robertson, R.K. Narayan, Z.L. Gokaslan, R. Pahwa, R.G. Grossman, P. Caram et al., Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg. 70(2), 222–230 (1989). https://doi.org/10.3171/jns.1989.70.2.0222

    Article  CAS  Google Scholar 

  26. W. Lu, W. Bai, H. Zhang, C. Xu, A.M. Chiarelli, A. Vazquez-Guardado et al., Wireless, implantable catheter-type oximeter designed for cardiac oxygen saturation. Sci. Adv. 2(7), 22 (2021). https://doi.org/10.1126/sciadv.abe0579

    Article  CAS  Google Scholar 

  27. N. Sugita, K. Obara, M. Yoshizawa, M. Abe, A. Tanaka, N. Homma, Techniques for estimating blood pressure variation using video images. Proc Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. 2015(8), 4218–4221 (2015). https://doi.org/10.1109/EMBC.2015.7319325

    Article  Google Scholar 

  28. J.M.J. Huttunen, L. Karkkainen, H. Lindholm, Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data. PLoS Comput. Biol. (2019). https://doi.org/10.1371/journal.pcbi.1007259

    Article  Google Scholar 

  29. Y. Lee, J.D. Bok, H.J. Lee, H.G. Lee, D. Kim, I. Lee et al., Body temperature monitoring using subcutaneously implanted thermo-loggers from Holstein Steers. Asian-Australas. J. Anim. Sci. 29(2), 299–306 (2016). https://doi.org/10.5713/ajas.15.0353

    Article  CAS  Google Scholar 

  30. A.J. Müller, M. Knuth, K.S. Nikolaus, R. Krivanek, F. Kuster, C. Hasslacher et al., Blood glucose self-monitoring with a long-term subconjunctival glucose sensor. J. Diab. Sci. Technol. 7(1), 24–34 (2013). https://doi.org/10.1177/193229681300700104

    Article  Google Scholar 

  31. M. Mortellaro, A. DeHennis, Performance characterization of an abiotic and fluorescent-based continuous glucose monitoring system in patients with type 1 diabetes. Biosens. Bioelectron. 2014(61), 227–231 (2014). https://doi.org/10.1016/j.bios.2014.05.022

    Article  CAS  Google Scholar 

  32. F. Lellouche, P.A. Bouchard, M. Karimi, N. Juteau, Q. Mascret, E. Bharucha et al., Proof of concept for implantable oximetry: results of a feasibility study. Am. Thorac. Soc. (2019). https://doi.org/10.1164/ajrccm-conference.2019.199.1

    Article  Google Scholar 

  33. S. Kuppusami, R.H. Oskouei, Parylene coatings in medical devices and implants: a review. Univ. J. Biomed. Eng.. 3(2), 9–14 (2015). https://doi.org/10.13189/ujbe.2015.030201

    Article  Google Scholar 

  34. C. Hassler, R.P. Von Metzen, P. Ruther, T. Stieglitz, Characterization of Parylene C as an encapsulation material for implanted neural prostheses. J Biomed. Mater. Res.—B Appl. Biomater. 93(1), 266–274 (2010). https://doi.org/10.1002/jbm.b.31584

    Article  CAS  Google Scholar 

  35. A. Lecomte, A. Degache, E. Descamps, L. Dahan, C. Bergaud, In vitro and in vivo biostability assessment of chronically-implanted Parylene C neural sensors. Sens Actuat B. 251, 1001–1008 (2017). https://doi.org/10.1016/j.snb.2017.05.057

    Article  CAS  Google Scholar 

  36. J. del Valle, N. de la Oliva, M. Muller, T. Stieglitz, X. Navarro, Biocompatibility evaluation of Parylene C and polyimide as substrates for peripheral nerve interfaces. IEEE (2015). https://doi.org/10.1109/NER.2015.7146654

    Article  Google Scholar 

  37. N. De La Oliva, M. Mueller, T. Stieglitz, X. Navarro, J. Del Valle, On the use of Parylene C polymer as substrate for peripheral nerve electrodes. Sci. Rep. 8(1), 1–12 (2018). https://doi.org/10.1038/s41598-018-24502-z

    Article  CAS  Google Scholar 

  38. VSi.: Parylene biocompatibility—it does a body good. https://vsiparylene.com/resources/parylene-biocompatibility/

  39. D. Zeniieh, L. Ledernez, G. Urban, Parylene-C as high performance encapsulation material for implantable sensors. Procedia Eng. 87, 1398–1401 (2014). https://doi.org/10.1016/j.proeng.2014.11.704

    Article  CAS  Google Scholar 

  40. M. Golda-Cepa, K. Engvall, M. Hakkarainen, A. Kotarba, Recent progress on Parylene C polymer for biomedical applications: a review. Progress Org Coat. 3(140), 105493 (2020). https://doi.org/10.1016/j.porgcoat.2019.105493

    Article  CAS  Google Scholar 

  41. S. Reichelt, J. Fiala, A. Werber, K. Forster, C. Heilmann, R. Klemm et al., Development of an implantable pulse oximeter. IEEE Trans. Biomed. Eng. 55(2), 581–588 (2008). https://doi.org/10.1109/TBME.2007.902242

    Article  Google Scholar 

  42. P. Bingger, J. Fiala, A. Seifert, N. Weber, A. Moser, F. Goldschmidtboeing, et al., Implantable multi sensor system for in vivo monitoring of cardiovascular parameters. TRANSDUCERS 2009—15th Int. Conf. Solid-State Sens. Actuat. Microsyst., 1469–1472 (2009). https://doi.org/10.1109/SENSOR.2009.5285821

  43. M. Theodor, D. Ruh, S. Subramanian, K. Forster, C. Heilmann, F. Beyersdorf et al., Implantable pulse oximetry on subcutaneous tissue. 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC 2014, 2089–2092 (2014). https://doi.org/10.1109/EMBC.2014.6944028

    Article  Google Scholar 

  44. L. Lu, P. Gutruf, L. Xia, D.L. Bhatti, X. Wang, A. Vazquez-Guardado, et al., Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl. Acad. Sci. USA 2(115), E1374–E1383 (2018). https://doi.org/10.1073/pnas.1718721115

    Article  CAS  Google Scholar 

  45. H. Zhang, P. Gutruf, K. Meacham, M.C. Montana, X. Zhao, A.M. Chiarelli et al., Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aaw0873

    Article  Google Scholar 

  46. R.M. Pearse, A. Rhodes, Mixed and central venous oxygen saturation. Yearbook Intensive Care Emerg. Med. 2005, 592–602 (2005). https://doi.org/10.1007/0-387-26272-551

    Article  Google Scholar 

  47. Frazier J. Theory and clinical application of continuous fiberoptic central venous oximetry (ScvO2) monitoring. Irvine, California: Edwards Lifesciences. https://edwardsprodjp.blob.core.windows.net/media/Zh/devices/monitoring/hemodynamic%20monitoring/ar12912-pediasatheory clinical app 1lr.pdf. Accessed 10 Sept 2022

  48. J.G. Webster, Design of pulse oximeters (Institute of Physics Publishing, Bristol, 1997)

    Book  Google Scholar 

  49. J. Moyle, Pulse oximetry (BMJ Books, London, 2002)

    Google Scholar 

  50. P.D. Mannheimer, The light-tissue interaction of pulse oximetry. Anesth. Analg. 12(105), S10–S17 (2007). https://doi.org/10.1213/01.ane.0000269522.84942.54

    Article  Google Scholar 

  51. M. van Gastel, S. Stuijk, G. De Haan, New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring. Sci. Rep. 6(November), 1–16 (2016). https://doi.org/10.1038/srep38609

    Article  CAS  Google Scholar 

  52. J.E. Sinex, Pulse oximetry: principles and limitations. Am. J. Emerg. Med. 1(17), 59–66 (1999). https://doi.org/10.1016/S0735-6757(99)90019-0

    Article  Google Scholar 

  53. N. Stubán, N. Masatsugu, Non-invasive calibration method for pulse oximeters. Periodica Polytechn. Electr. Eng. 52(1–2), 91 (2008). https://doi.org/10.3311/pp.ee.2008-1-2.11

    Article  Google Scholar 

  54. P.D. Mannheimer, J.R. Casciani, M.E. Fein, S.L. Nierlich, Wavelength selection for low-saturation pulse oximetry. IEEE Trans. Biomed. Eng. 44(3), 148–158 (1997). https://doi.org/10.1109/10.554761

    Article  CAS  Google Scholar 

  55. S.K. Lyons, P.S. Patrick, K.M. Brindle, Imaging mouse cancer models in vivo using reporter transgenes. Cold Spring Harb. Protoc. 2013(8), 685–699 (2013). https://doi.org/10.1101/pdb.top069864

    Article  Google Scholar 

  56. H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110(5), 2620–2640 (2010). https://doi.org/10.1021/cr900263j

    Article  CAS  Google Scholar 

  57. M. Faulhaber, H. Gatterer, T. Haider, T. Linser, N. Netzer, M. Burtscher, Heart rate and blood pressure responses during hypoxic cycles of a 3-Week intermittent hypoxia breathing program in patients at risk for or with mild COPD. Int. J. COPD. 10, 339–345 (2015). https://doi.org/10.2147/COPD.S75749

    Article  Google Scholar 

  58. J.D. Campbell, C.G. Pretty, J.G. Chase, P.J. Bones, Near-real-time detection of pulse oximeter PPG peaks using wavelet decomposition. IFAC-Papers OnLine. 51(27), 146–151 (2018). https://doi.org/10.1016/j.ifacol.2018.11.652

    Article  Google Scholar 

  59. P.H.C. Eilers, A perfect smoother. Anal. Chem. 75(14), 3631–3636 (2003). https://doi.org/10.1021/ac034173t

    Article  CAS  Google Scholar 

  60. P.H. Eilers, H.F. Boelens, Baseline correction with asymmetric least squares smoothing. Leiden Univ Med Centre Rep. 1(1), 5 (2005)

    Google Scholar 

  61. U.A. Leuenberger, J.C. Hardy, M.D. Herr, K.S. Gray, L.I. Sinoway, Hypoxia augments apnea-induced peripheral vasoconstriction in humans. J. Appl. Physiol. 90(4), 1516–1522 (2001). https://doi.org/10.1152/jappl.2001.90.4.1516

    Article  CAS  Google Scholar 

  62. V.A. Imadojemu, K. Gleeson, K.S. Gray, L.I. Sinoway, U.A. Leuenberger, Obstructive apnea during sleep is associated with peripheral vasoconstriction. Am. J. Res. Crit. Care Med. 165(1), 61–66 (2002). https://doi.org/10.1164/ajrccm.165.1.2009062

    Article  Google Scholar 

  63. A. Schäfer, I. Vagedes, How accurate is pulse rate variability as an estimate of heart rate variability? Int. J. Cardiol. 166(1), 15–29 (2013). https://doi.org/10.1016/j.ijcard.2012.03.119

    Article  Google Scholar 

  64. Walton, Z.D.: Measuring Venous Oxygen Saturation Using the Photoplethysmograph Waveform [Doctor of Medicine]. Yale.

  65. K. Shafqat, R.M. Langford, P.A. Kyriacou, Estimation of instantaneous venous blood saturation using the photoplethysmograph waveform. Physiol. Meas. 10(36), 2203–2214 (2015). https://doi.org/10.1088/0967-3334/36/10/2203

    Article  Google Scholar 

  66. I. Garcıa-Lopez, E. Rodriguez-Villegas, Extracting the jugular venous pulse from anterior neck contact photoplethysmography. Sci. Rep. 12(10), 3466 (2020). https://doi.org/10.1038/s41598-020-60317-7

    Article  CAS  Google Scholar 

  67. Chapter one—introduction to exercise physiology. In: Glynn, A., Fiddler, H., Demetriou-Swanwick, R., Watkins, V., Dickie, A., Sukumar, S. et al., Eds. The physiotherapist’s pocket guide to exercise. Edinburgh: Churchill Livingstone, pp. 1–11 (2009).

  68. T. LaPier, Impaired aerobic capacity/endurance, 3rd edn. (Elsevier Inc., 2012)

    Google Scholar 

  69. P. Schonle, Q. Wang, N. Brun, J. Bosser, P. Meier, Q. Huang, Towards an implantable telemetry system for SpO2 and PWV measurement in small animals. IEEE (2017). https://doi.org/10.1109/BIOCAS.2017.8325211

    Article  Google Scholar 

  70. J. Fiala, R. Gehrke, N. Weber, P. Bingger, H. Zappe, A. Seifert, Implantable optical sensor for continuous monitoring of various hemoglobin derivatives and tissue perfusion. IEEE (2009). https://doi.org/10.1109/ICSENS.2009.5398324

    Article  Google Scholar 

  71. F. Marefat, R. Erfani, K.L. Kilgore, P. Mohseni, Minimally invasive muscle-based recording of photoplethysmogram toward chronic implantation. IEEE (2016). https://doi.org/10.1109/BioCAS.2016.7833813

    Article  Google Scholar 

  72. J.M. Valero-Sarmiento, P. Ahmmed, A. Bozkurt, In vivo evaluation of a subcutaneously injectable implant with a low-power photoplethysmography ASIC for animal monitoring. Sensors. 12(20), 7335 (2020). https://doi.org/10.3390/s20247335

    Article  Google Scholar 

  73. M. Chan, V. Ganti, J. Heller, C. Abdallah, M. Etemadi, O. Inan, Enabling continuous wearable reflectance pulse oximetry at the sternum. Biosensors 11(12), 521 (2021). https://doi.org/10.3390/bios11120521

    Article  CAS  Google Scholar 

  74. Integrated analog front-end for pulse oximeters AFE4490; 2013. https://www.ti.com/lit/ds/symlink/afe4490.pdf. Accessed 10 Sept 2022

  75. Bhat, V., Vaithy, B., Whitchurch, A., Kandan, M., Joice, T.M.: AFE4490 oximeter. GitHub. https://github.com/Protocentral/AFE4490Oximeter

  76. S. de Mulatier, D. Coulon, R. Delattre, S. Blayac, M. Ramuz, Copper-leaf-based process for imperceptible computational electronics. Adv. Electron. Mater. (2020). https://doi.org/10.1002/aelm.201900787

    Article  Google Scholar 

  77. C.D. Lee, E. Meng, Mechanical proper ties of thin-film Parylene–metal–Parylene devices. Front. Mech. Eng. 1(Sept), 1–14 (2015). https://doi.org/10.3389/fmech.2015.00010

    Article  Google Scholar 

  78. T. Graven-Nielsen, L. Arendt-Nielsen, S. Mense, Thermosensitivity of muscle: High-intensity thermal stimulation of muscle tissue induces muscle pain in humans. J. Physiol. 540(2), 647–656 (2002). https://doi.org/10.1113/jphysiol.2001.013336

    Article  CAS  Google Scholar 

  79. P.E. Bickler, J.R. Feiner, M.S. Lipnick, P. Batchelder, D.B. MacLeod, J.W. Severinghaus, Effects of acute, profound hypoxia on healthy humans. Anesth. Analg. 124(1), 146–153 (2017). https://doi.org/10.1213/ANE.0000000000001421

    Article  Google Scholar 

Download references

Acknowledgements

We thank the ID-Fab platform at the Centre Microélectronique de Provence for their support in preparing the devices used here.

Author information

Authors and Affiliations

Authors

Contributions

MR conceived the project. JT and MR designed the experiments. JT prepared materials and analyzed experimental data. JT, PB and MR performed the experiments. JT wrote the manuscript and prepared the figures. MR and PB revised the manuscript. MR supervised this work and provided financial support.

Corresponding author

Correspondence to Marc Ramuz.

Ethics declarations

Conflict of interest

The authors are aware of no conflicts of interest.

Ethical Approval

The animals were used in accordance with institutional and national guidelines for the care and use of animals. The experiments conducted on animals have been evaluated and accepted by an Ethical Committee (APAFIS#6342). Four Pietrain pigs (40 ± 5 kg) were used in total.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1483 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troughton, J.G., Brige, P. & Ramuz, M. Flexible, Implantable, Pulse Oximetry Sensors: Toward Long-Term Monitoring of Blood Oxygen Saturations. Biomedical Materials & Devices 1, 912–924 (2023). https://doi.org/10.1007/s44174-022-00057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00057-6

Keywords

Navigation