Skip to main content

Advertisement

Log in

Sprayable Bioactive Dressings for Skin Wounds: Recent Developments and Future Prospects

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

The skin, as the body's main protection barrier from the environment, has an intrinsic self-repairable nature. However, proper wound healing only occurs under appropriate conditions. Skin wounds represent an economic burden on healthcare systems worldwide. Recent research has focused on developing new therapies, especially for chronic wounds. Among them, spray-applied therapies have emerged as a promising strategy for allowing deeper penetration of the products, better conformability, easiness of application, lower discomfort for the patient, and lower risk of contamination during application. Specifically, sprayable wound dressings have been getting attention for enabling the treatment of severe cases or hard-to-heal wounds by incorporating different bioactive agents. Organic and inorganic compounds, natural extracts, signaling compounds, and live human cells have been investigated. In this context, this review summarizes the main findings of recently developed spray-applied bioactive wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.K. Sen, Human wounds and its burden: an updated compendium of estimates. Adv. Wound Care 8, 39–48 (2019). https://doi.org/10.1089/wound.2019.0946

    Article  Google Scholar 

  2. E. Rezvani Ghomi, S. Khalili, S. Nouri Khorasani, R. Esmaeely Neisiany et al., Wound dressings: current advances and future directions. J. Appl. Polym. Sci. 136, 1–12 (2019). https://doi.org/10.1002/app.47738

    Article  CAS  Google Scholar 

  3. M.H. Kathawala, W.L. Ng, D. Liu, M.W. Naing et al., Healing of chronic wounds: an update of recent developments and future possibilities. Tissue Eng. B 25, 429–444 (2019). https://doi.org/10.1089/ten.teb.2019.0019

    Article  Google Scholar 

  4. D. Doughty, Dressings and more: guidelines for topical wound management. Nurs. Clin. 40, 217–231 (2005). https://doi.org/10.1016/J.CNUR.2004.09.012

    Article  Google Scholar 

  5. S. Guo, L.A. DiPietro, Factors affecting wound healing. J. Dent. Res. 89, 219–229 (2010). https://doi.org/10.1177/0022034509359125

    Article  CAS  Google Scholar 

  6. K. Kathe, H. Kathpalia, Film forming systems for topical and transdermal drug delivery. Asian J. Pharm. Sci. 12, 487–497 (2017)

    Article  Google Scholar 

  7. P. Arenberger, F. Elg, J. Petyt, K. Cutting, Expected outcomes from topical haemoglobin spray in non-healing and worsening venous leg ulcers. J. Wound Care 24, 228–236 (2015). https://doi.org/10.12968/jowc.2015.24.5.228

    Article  CAS  Google Scholar 

  8. K. Düregger, A. Gäble, M. Eblenkamp, Development and evaluation of a spray applicator for platelet-rich plasma. Colloids Surf. B 171, 214–223 (2018). https://doi.org/10.1016/j.colsurfb.2018.07.018

    Article  CAS  Google Scholar 

  9. K.J.B. Kus, E.S. Ruiz, Wound dressings—a practical review. Curr. Dermatol. Rep. 9, 298–308 (2020). https://doi.org/10.1007/s13671-020-00319-w

    Article  Google Scholar 

  10. J.C. Gerlach, C. Johnen, E. McCoy, K. Bräutigam et al., Autologous skin cell spray-transplantation for a deep dermal burn patient in an ambulant treatment room setting. Burns 37, e19–e23 (2011). https://doi.org/10.1016/j.burns.2011.01.022

    Article  Google Scholar 

  11. N. Tayyib, Use of topical haemoglobin spray in hard-to-heal wound management: a systematic review. J. Wound Care 31, 520–531 (2022). https://doi.org/10.12968/JOWC.2022.31.6.520

    Article  Google Scholar 

  12. C. Loh, Q.Y. Tan, D.L.K. Eng, S.R. Walsh et al., Granulox—the use of topical hemoglobin to aid wound healing: a literature review and case series from Singapore. Int. J. Low Extreme Wounds 20, 88–97 (2021). https://doi.org/10.1177/1534734620910318

    Article  Google Scholar 

  13. J.J. He, C. McCarthy, G. Camci-Unal, Development of hydrogel-based sprayable wound dressings for second- and third-degree burns. Adv. Nanobiomed. Res. 1, 2100004 (2021). https://doi.org/10.1002/ANBR.202100004

    Article  CAS  Google Scholar 

  14. Y. Liao, L. Xie, J. Ye, T. Chen et al., Sprayable hydrogel for biomedical applications. Biomater. Sci. 10, 2759–2771 (2022). https://doi.org/10.1039/D2BM00338D

    Article  CAS  Google Scholar 

  15. S. Motamedi, A. Esfandpour, A. Babajani, E. Jamshidi et al., The current challenges on spray-based cell delivery to the skin wounds. Tissue Eng. C 27, 543–558 (2021). https://doi.org/10.1089/ten.tec.2021.0158

    Article  CAS  Google Scholar 

  16. P. Pleguezuelos-Beltrán, P. Gálvez-Martín, D. Nieto-García, J.A. Marchal et al., Advances in spray products for skin regeneration. Bioact. Mater. 16, 187–203 (2022). https://doi.org/10.1016/j.bioactmat.2022.02.023

    Article  CAS  Google Scholar 

  17. B. Balakrishnan, M. Mohanty, P.R. Umashankar, A. Jayakrishnan, Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26, 6335–6342 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.012

    Article  CAS  Google Scholar 

  18. J. Grip, R.E. Engstad, I. Skjæveland, N. Škalko-Basnet et al., Sprayable Carbopol hydrogel with soluble beta-1,3/1,6-glucan as an active ingredient for wound healing—development and in vivo evaluation. Eur. J. Pharm. Sci. 107, 24–31 (2017). https://doi.org/10.1016/j.ejps.2017.06.029

    Article  CAS  Google Scholar 

  19. S. Tavakoli, A.S. Klar, Advanced hydrogels as wound dressings. Biomolecules 10, 1169 (2020). https://doi.org/10.3390/biom10081169

    Article  CAS  Google Scholar 

  20. Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206

    Article  CAS  Google Scholar 

  21. B. Chu, C. Wu, S. Tang, M. Tu, Sprayable agarose-derived dopamine-grafted microgels for promoting tissue adhesion in skin regeneration. React. Funct. Polym. 154, 104665 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104665

    Article  CAS  Google Scholar 

  22. B. ter Horst, R.J.A. Moakes, G. Chouhan, R.L. Williams et al., A gellan-based fluid gel carrier to enhance topical spray delivery. Acta Biomater. 89, 166–179 (2019). https://doi.org/10.1016/j.actbio.2019.03.036

    Article  CAS  Google Scholar 

  23. O. Catanzano, M.C. Straccia, A. Miro, F. Ungaro et al., Spray-by-spray in situ cross-linking alginate hydrogels delivering a tea tree oil microemulsion. Eur. J. Pharm. Sci. 66, 20–28 (2015). https://doi.org/10.1016/j.ejps.2014.09.018

    Article  CAS  Google Scholar 

  24. W. Ma, H. Ma, P. Qiu, H. Zhang et al., Sprayable β-FeSi2 composite hydrogel for portable skin tumor treatment and wound healing. Biomaterials 279, 121225 (2021). https://doi.org/10.1016/J.BIOMATERIALS.2021.121225

    Article  CAS  Google Scholar 

  25. C. Cai, T. Wang, X. Han, S. Yang et al., In situ wound sprayable double-network hydrogel: preparation and characterization. Chin. Chem. Lett. 33, 1963–1969 (2022). https://doi.org/10.1016/J.CCLET.2021.11.047

    Article  CAS  Google Scholar 

  26. A. Kumar, M. Jaiswal, Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. J. Appl. Polym. Sci. 133, 43260 (2016). https://doi.org/10.1002/app.43260

    Article  CAS  Google Scholar 

  27. A. Kumar, H. Kaur, Sprayed in situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for improved antibacterial effects. Int. J. Biol. Macromol. 145, 950–964 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.186

    Article  CAS  Google Scholar 

  28. Y. Du, L. Li, H. Peng, H. Zheng et al., A spray-filming self-healing hydrogel fabricated from modified sodium alginate and gelatin as a bacterial barrier. Macromol. Biosci. 20, 1900303 (2020). https://doi.org/10.1002/mabi.201900303

    Article  CAS  Google Scholar 

  29. D.S. Yoon, Y. Lee, H.A. Ryu, Y. Jang et al., Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomater. 38, 59–68 (2016). https://doi.org/10.1016/j.actbio.2016.04.030

    Article  CAS  Google Scholar 

  30. Y. Lee, K.H. Choi, K.M. Park, J.M. Lee et al., In situ forming and H2O2-releasing hydrogels for treatment of drug-resistant bacterial infections. ACS Appl. Mater. Interfaces 9, 16890–16899 (2017). https://doi.org/10.1021/acsami.7b03870

    Article  CAS  Google Scholar 

  31. V. Falanga, S. Iwamoto, M. Chartier, T. Yufit et al., Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 13, 1299–1312 (2007). https://doi.org/10.1089/ten.2006.0278

    Article  CAS  Google Scholar 

  32. R.S. Kirsner, W.A. Marston, R.J. Snyder, T.D. Lee et al., Durability of healing from spray-applied cell therapy with human allogeneic fibroblasts and keratinocytes for the treatment of chronic venous leg ulcers: a 6-month follow-up. Wound Repair Regen. 21, 682–687 (2013). https://doi.org/10.1111/wrr.12076

    Article  Google Scholar 

  33. W.D. Spotnitz, Fibrin sealant: the only approved hemostat, sealant, and adhesive—a laboratory and clinical perspective. ISRN Surg. 2014, 1–28 (2014). https://doi.org/10.1155/2014/203943

    Article  Google Scholar 

  34. V. Bhagat, M.L. Becker, Degradable adhesives for surgery and tissue engineering. Biomacromolecules 18, 3009–3039 (2017). https://doi.org/10.1021/acs.biomac.7b00969

    Article  CAS  Google Scholar 

  35. A. Andreone, D. Den Hollander, F. Moreno, A retrospective study on the use of dermis micrografts in platelet-rich fibrin for the resurfacing of massive and chronic full-thickness burns. Stem Cells Int. 2019, 8636079/1-8636079/9 (2019). https://doi.org/10.1155/2019/8636079

    Article  CAS  Google Scholar 

  36. Y. Hou, N. Jiang, D. Sun, Y. Wang et al., A fast UV-curable PU–PAAm hydrogel with mechanical flexibility and self-adhesion for wound healing. RSC Adv. 10, 4907–4915 (2020). https://doi.org/10.1039/c9ra10666a

    Article  CAS  Google Scholar 

  37. H. Cheng, Z. Shi, K. Yue, X. Huang et al., Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219–232 (2021). https://doi.org/10.1016/j.actbio.2021.02.002

    Article  CAS  Google Scholar 

  38. N. Annabi, D. Rana, E. Shirzaei Sani, R. Portillo-Lara et al., Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials 139, 229–243 (2017). https://doi.org/10.1016/j.biomaterials.2017.05.011

    Article  CAS  Google Scholar 

  39. S. Tavakoli, H. Mokhtari, M. Kharaziha, A. Kermanpur et al., A multifunctional nanocomposite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/l-glutamic acid for diabetic wounds. Mater. Sci. Eng. C 111, 110837 (2020). https://doi.org/10.1016/j.msec.2020.110837

    Article  CAS  Google Scholar 

  40. S. Tavakoli, M. Kharaziha, A. Kermanpur, H. Mokhtari, Sprayable and injectable visible-light Kappa-carrageenan hydrogel for in situ soft tissue engineering. Int. J. Biol. Macromol. 138, 590–601 (2019). https://doi.org/10.1016/j.ijbiomac.2019.07.126

    Article  CAS  Google Scholar 

  41. K. Zhang, K. Xue, X.J. Loh, Thermo-responsive hydrogels: from recent progress to biomedical applications. Gels 7, 77 (2021). https://doi.org/10.3390/GELS7030077

    Article  Google Scholar 

  42. X. Yan, W.W. Fang, J. Xue, T.C. Sun et al., Thermoresponsive in situ forming hydrogel with sol–gel irreversibility for effective methicillin-resistant Staphylococcus aureus infected wound healing. ACS Nano 13, 10074–10084 (2019). https://doi.org/10.1021/acsnano.9b02845

    Article  CAS  Google Scholar 

  43. S.L. Banerjee, S. Das, K. Bhattacharya, M. Kundu et al., Ag NPs incorporated self-healable thermoresponsive hydrogel using precise structural “Interlocking” complex of polyelectrolyte BCPs: a potential new wound healing material. Chem. Eng. J. 405, 126436 (2021). https://doi.org/10.1016/J.CEJ.2020.126436

    Article  CAS  Google Scholar 

  44. P. Wang, L. Peng, J. Lin, Y. Li et al., Enzyme hybrid virus-like hollow mesoporous CuO adhesive hydrogel spray through glucose-activated cascade reaction to efficiently promote diabetic wound healing. Chem. Eng. J. 415, 128901 (2021). https://doi.org/10.1016/J.CEJ.2021.128901

    Article  CAS  Google Scholar 

  45. J. Grip, E. Steene, R.E. Engstad, J. Hart et al., Development of a novel beta-glucan supplemented hydrogel spray formulation and wound healing efficacy in a db/db diabetic mouse model. Eur. J. Pharm. Biopharm. 169, 280–291 (2021). https://doi.org/10.1016/J.EJPB.2021.10.013

    Article  CAS  Google Scholar 

  46. A.V.P. Silvestrini, A.L. Caron, J. Viegas, F.G. Praça et al., Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin. Drug Deliv. 17, 1781–1805 (2020). https://doi.org/10.1080/17425247.2020.1819979

    Article  CAS  Google Scholar 

  47. M. Chountoulesi, S. Pispas, I.K. Tseti, C. Demetzos, Lyotropic liquid crystalline nanostructures as drug delivery systems and vaccine platforms. Pharmaceuticals 15, 429 (2022). https://doi.org/10.3390/ph15040429

    Article  CAS  Google Scholar 

  48. X. Yue, X. Zhang, C. Wang, Y. Huang et al., A bacteria-resistant and self-healing spray dressing based on lyotropic liquid crystals to treat infected post-operative wounds. J. Mater. Chem. B 9, 8121–8137 (2021). https://doi.org/10.1039/D1TB01201K

    Article  CAS  Google Scholar 

  49. J. Chen, H. Wang, L. Mei, B. Wang et al., A pirfenidone loaded spray dressing based on lyotropic liquid crystals for deep partial thickness burn treatment: healing promotion and scar prophylaxis. J. Mater. Chem. B 8, 2573–2588 (2020). https://doi.org/10.1039/c9tb02929j

    Article  CAS  Google Scholar 

  50. C. Wang, J. Chen, X. Yue, X. Xia et al., Improving water-absorption and mechanical strength: lyotropic liquid crystalline-based spray dressings as a candidate wound management system. AAPS PharmSciTech 23(2), 1–10 (2022). https://doi.org/10.1208/S12249-021-02205-5

    Article  Google Scholar 

  51. N. Boonmak, J. Niyompanich, P. Chuysinuan, P. Niamlang et al., Preparation of mangosteen extract-loaded poly(vinyl acetate) for use as an antibacterial spray-on dressing. J. Drug Deliv. Sci. Technol. 46, 322–329 (2018). https://doi.org/10.1016/j.jddst.2018.05.033

    Article  CAS  Google Scholar 

  52. R. Sritharadol, T. Nakpheng, P. Wan Sia Heng, T. Srichana, Development of a topical mupirocin spray for antibacterial and wound-healing applications. Drug Dev. Ind. Pharm. 43, 1715–1728 (2017). https://doi.org/10.1080/03639045.2017.1339077

    Article  CAS  Google Scholar 

  53. D. Bakkiyaraj, R. Sritharadol, A.R. Padmavathi, T. Nakpheng et al., Anti-biofilm properties of a mupirocin spray formulation against Escherichia coli wound infections. Biofouling 33, 591–600 (2017). https://doi.org/10.1080/08927014.2017.1337100

    Article  CAS  Google Scholar 

  54. E. Šnejdrová, J. Martiška, J. Loskot, G. Paraskevopoulos et al., PLGA based film forming systems for superficial fungal infections treatment. Eur. J. Pharm. Sci. 163, 105855 (2021). https://doi.org/10.1016/J.EJPS.2021.105855

    Article  Google Scholar 

  55. J.L. Daristotle, L.W. Lau, M. Erdi, J. Hunter et al., Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioeng. Transl. Med. 5, e10149 (2020). https://doi.org/10.1002/btm2.10149

    Article  CAS  Google Scholar 

  56. A. Amirsadeghi, A. Jafari, S.S. Hashemi, A. Kazemi et al., Sprayable antibacterial Persian gum-silver nanoparticle dressing for wound healing acceleration. Mater. Today Commun. 27, 102225 (2021). https://doi.org/10.1016/J.MTCOMM.2021.102225

    Article  CAS  Google Scholar 

  57. A.K. Umar, S. Sriwidodo, I.P. Maksum, N. Wathoni, Film-forming spray of water-soluble chitosan containing liposome-coated human epidermal growth factor for wound healing. Molecules 26, 5326 (2021). https://doi.org/10.3390/MOLECULES26175326

    Article  CAS  Google Scholar 

  58. A.K. Umar, M. Butarbutar, S. Sriwidodo, N. Wathoni, Film-forming sprays for topical drug delivery. Drug Des. Dev. Ther. 14, 2909–2925 (2020). https://doi.org/10.2147/DDDT.S256666

    Article  CAS  Google Scholar 

  59. D. Liu, Y. Liao, E.J. Cornel, M. Lv et al., Polymersome wound dressing spray capable of bacterial inhibition and H2S generation for complete diabetic wound healing. Chem. Mater. 33, 7972–7985 (2021). https://doi.org/10.1021/acs.chemmater.1c01872

    Article  CAS  Google Scholar 

  60. Y. Li, Q. Leng, X. Pang, H. Shi et al., Therapeutic effects of EGF-modified curcumin/chitosan nano-spray on wound healing. Regen. Biomater. 8, rbab009 (2021). https://doi.org/10.1093/RB/RBAB009

    Article  Google Scholar 

  61. S.J. Gwak, S.S. Kim, K. Sung, J. Han et al., Synergistic effect of keratinocyte transplantation and epidermal growth factor delivery on epidermal regeneration. Cell Transplant. 14, 809–817 (2005). https://doi.org/10.3727/000000005783982521

    Article  Google Scholar 

  62. C. Fredriksson, G. Kratz, F. Huss, Transplantation of cultured human keratinocytes in single cell suspension: a comparative in vitro study of different application techniques. Burns 34, 212–219 (2008). https://doi.org/10.1016/j.burns.2007.03.008

    Article  Google Scholar 

  63. F.A. Navarro, M.L. Stoner, C.S. Park, J.C. Huertas et al., Sprayed keratinocyte suspensions in a porcine microwound model. J. Burn Care Rehabil. 21, 513–518 (2000)

    Article  CAS  Google Scholar 

  64. P.K. Deb, S.N. Abed, H. Maher, A. Al-Aboudi et al., Aerosols in pharmaceutical product development. Drug Deliv. Syst. (2020). https://doi.org/10.1016/B978-0-12-814487-9.00011-9

    Article  Google Scholar 

  65. R.W. Abdo, N. Saadi, N.I. Hijazi, Y.A. Suleiman, Quality control and testing evaluation of pharmaceutical aerosols. Drug Deliv. Syst. (2020). https://doi.org/10.1016/B978-0-12-814487-9.00012-0

    Article  Google Scholar 

  66. W.H. Finlay, Pharmaceutical aerosol sprays for drug delivery to the lungs, in Handbook of Atomization and Sprays. ed. by N. Ashgriz (Springer, Boston, 2011), pp.899–907

    Chapter  Google Scholar 

  67. M. Chang, J. Liu, B. Guo, X. Fang et al., Auto micro atomization delivery of human epidermal organoids improves therapeutic effects for skin wound healing. Front. Bioeng. Biotechnol. 8, 110 (2020). https://doi.org/10.3389/fbioe.2020.00110

    Article  Google Scholar 

  68. L. Zhang, X. Yan, L. An, M. Wang et al., Novel pneumatically assisted atomization device for living cell delivery: application of sprayed mesenchymal stem cells for skin regeneration. Biodes. Manuf. 5, 220–232 (2021). https://doi.org/10.1007/s42242-021-00144-5

    Article  CAS  Google Scholar 

  69. X. Cui, Y. Lü, C. Yue, Development and research progress of anti-drug resistant bacteria drugs. Infect. Drug Resist. 14, 5575–5593 (2021). https://doi.org/10.2147/IDR.S338987

    Article  CAS  Google Scholar 

  70. C.J. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski et al., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022). https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  CAS  Google Scholar 

  71. S. Nadar, T. Khan, S.G. Patching, A. Omri, Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms 10, 1–28 (2022). https://doi.org/10.3390/microorganisms10020303

    Article  CAS  Google Scholar 

  72. M. Falcone, B. De Angelis, F. Pea, A. Scalise et al., Challenges in the management of chronic wound infections. J. Glob. Antimicrob. Resist. 26, 140–147 (2021). https://doi.org/10.1016/J.JGAR.2021.05.010

    Article  CAS  Google Scholar 

  73. H.C. Lau, A. Kim, Pharmaceutical perspectives of impaired wound healing in diabetic foot ulcer. J. Pharm. Investig. 46, 403–423 (2016). https://doi.org/10.1007/S40005-016-0268-6

    Article  CAS  Google Scholar 

  74. S. McLaughlin, M. Ahumada, W. Franco, T.-F. Mah et al., Sprayable peptide-modified silver nanoparticles as a barrier against bacterial colonization. Nanoscale 8, 19200–19203 (2016). https://doi.org/10.1039/c6nr07976h

    Article  CAS  Google Scholar 

  75. K. Vaghasiya, A. Sharma, K. Kumar, E. Ray et al., Heparin-encapsulated metered-dose topical “Nano-Spray Gel” liposomal formulation ensures rapid on-site management of frostbite injury by inflammatory cytokines scavenging. ACS Biomater. Sci. Eng. 5, 6617–6631 (2019). https://doi.org/10.1021/acsbiomaterials.9b01486

    Article  CAS  Google Scholar 

  76. Y.-S. Tzeng, S.-C. Deng, C.-H. Wang, J.-C. Tsai et al., Treatment of nonhealing diabetic lower extremity ulcers with skin graft and autologous platelet gel: a case series. BioMed. Res. Int. 2013, 837620 (2013). https://doi.org/10.1155/2013/837620

    Article  Google Scholar 

  77. B. Hersant, M. SidAhmed-Mezi, R. Bosc, J.-P. Meningaud, Autologous platelet-rich plasma/thrombin gel combined with split-thickness skin graft to manage postinfectious skin defects. Adv. Skin Wound Care 30, 502–508 (2017). https://doi.org/10.1097/01.ASW.0000524399.74460.87

    Article  Google Scholar 

  78. Y.L. Wong, M. Pandey, H. Choudhury, W.M. Lim et al., Development of in situ spray for local delivery of antibacterial drug for Hidradenitis Suppurativa: investigation of alternative formulation. Polymers (Basel) 13, 2770 (2021). https://doi.org/10.3390/polym13162770

    Article  CAS  Google Scholar 

  79. M. Mahlapuu, J. Håkansson, L. Ringstad, C. Björn, Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell Infect. Microbiol. 6, 194 (2016). https://doi.org/10.3389/fcimb.2016.00194

    Article  CAS  Google Scholar 

  80. M.D. Falciglia, R. Palladino, B. Maglione, G. Schiavo, In vitro antimicrobial activity evaluation of a novel Fitostimoline® plus spray formulation. Int. J. Microbiol. 2021, 1114853 (2021). https://doi.org/10.1155/2021/1114853

    Article  CAS  Google Scholar 

  81. D. Chicharro-Alcántara, M. Rubio-Zaragoza, E. Damiá-Giménez, J.M. Carrillo-Poveda et al., Platelet rich plasma: new insights for cutaneous wound healing management. J. Funct. Biomater. 9, 10 (2018). https://doi.org/10.3390/JFB9010010

    Article  Google Scholar 

  82. S. Sriram, R. Sankaralingam, M. Mani, T.N. Tamilselvam, Autologous platelet rich plasma in the management of non-healing vasculitic ulcers. Int. J. Rheum. Dis. 19, 1331–1336 (2016). https://doi.org/10.1111/1756-185X.12914

    Article  CAS  Google Scholar 

  83. C.Y. Yeung, P.S. Hsieh, L.G. Wei, L.C. Hsia et al., Efficacy of lyophilised platelet-rich plasma powder on healing rate in patients with deep second degree burn injury: a prospective double-blind randomized clinical trial. Ann. Plast. Surg. 80, S66–S69 (2018). https://doi.org/10.1097/SAP.0000000000001328

    Article  CAS  Google Scholar 

  84. K.H. Park, S.H. Han, J.P. Hong, S.K. Han et al., Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: a phase III multicenter, double-blind, randomized, placebo-controlled trial. Diabetes Res. Clin. Pract. 142, 335–344 (2018). https://doi.org/10.1016/j.diabres.2018.06.002

    Article  CAS  Google Scholar 

  85. A. Bahoric, A.R. Harrop, H.M. Clarke, R.M. Zuker, Aerosol vehicle for delivery of epidermal cells—an in vitro study. Plast. Surg. 5, 153–156 (1997). https://doi.org/10.4172/plastic-surgery.1000168

    Article  Google Scholar 

  86. F.O. Fraulin, A. Bahoric, A.R. Harrop, T. Hiruki et al., Autotransplantation of epithelial cells in the pig via an aerosol vehicle. J. Burn Care Rehabil. 19, 337–345 (1998)

    Article  CAS  Google Scholar 

  87. A. Roberts, B.E. Wyslouzil, L. Bonassar, Aerosol delivery of mammalian cells for tissue engineering. Biotechnol. Bioeng. 91, 801–807 (2005). https://doi.org/10.1002/bit.20549

    Article  CAS  Google Scholar 

  88. B. ter Horst, G. Chouhan, N.S. Moiemen, L.M. Grover, Advances in keratinocyte delivery in burn wound care. Adv. Drug Deliv. Rev. 123, 18–32 (2018). https://doi.org/10.1016/j.addr.2017.06.012

    Article  CAS  Google Scholar 

  89. B. De Angelis, A. Migner, L. Lucarini, A. Agovino et al., The use of a non cultured autologous cell suspension to repair chronic ulcers. Int. Wound J. 12, 32–39 (2015). https://doi.org/10.1111/iwj.12047

    Article  Google Scholar 

  90. R. Sood, D.E. Roggy, M.J. Zieger, M. Nazim et al., A comparative study of spray keratinocytes and autologous meshed split-thickness skin graft in the treatment of acute burn injuries. Wounds 27, 31–40 (2015)

    Google Scholar 

  91. Z.-C. Hu, D. Chen, D. Guo, Y.-Y. Liang et al., Randomized clinical trial of autologous skin cell suspension combined with skin grafting for chronic wounds. Br. J. Surg. 102, e117–e123 (2015). https://doi.org/10.1002/bjs.9688

    Article  Google Scholar 

  92. D. Hammer, J.L. Rendon, J. Sabino, K. Latham et al., Restoring full-thickness defects with spray skin in conjunction with dermal regenerate template and split-thickness skin grafting: a pilot study. J. Tissue Eng. Regen. Med. 11, 3523–3529 (2017). https://doi.org/10.1002/term.2264

    Article  CAS  Google Scholar 

  93. J.H. Holmes, J.A. Molnar, J.W. Shupp, W.L. Hickerson et al., Demonstration of the safety and effectiveness of the RECELL® System combined with split-thickness meshed autografts for the reduction of donor skin to treat mixed-depth burn injuries. Burns 45, 772–782 (2019). https://doi.org/10.1016/j.burns.2018.11.002

    Article  Google Scholar 

  94. J. Ren, J. Liu, N. Yu, W. Zhang et al., The use of noncultured regenerative epithelial suspension for improving skin color and scars: a report of 8 cases and review of the literature. J. Cosmet. Dermatol. 18, 1487–1494 (2019). https://doi.org/10.1111/jocd.13071

    Article  Google Scholar 

  95. P.D. Hayes, K.G. Harding, S.M. Johnson, C. Mccollum et al., A pilot multi-centre prospective randomised controlled trial of RECELL for the treatment of venous leg ulcers. Int. Wound J. 17, 742–752 (2020). https://doi.org/10.1111/iwj.13293

    Article  Google Scholar 

  96. Q. Chen, N. Yu, Z. Liu, W. Zhang et al., The clinical efficacy of RECELL® autologous cell regeneration techniques combined with dermabrasion treatment in acne scars. Aesthet. Plast. Surg. 44, 535–542 (2020). https://doi.org/10.1007/s00266-019-01481-8

    Article  Google Scholar 

  97. L. Manning, I.B. Ferreira, P. Gittings, J. Hiew et al., Wound healing with “spray-on” autologous skin grafting (RECELL) compared with standard care in patients with large diabetes-related foot wounds: an open-label randomised controlled trial. Int. Wound J. 19, 470–481 (2022). https://doi.org/10.1111/iwj.13646

    Article  Google Scholar 

  98. R.S. Kirsner, W.A. Marston, R.J. Snyder, T.D. Lee et al., Spray-applied cell therapy with human allogeneic fibroblasts and keratinocytes for the treatment of chronic venous leg ulcers: a phase 2, multicentre, double-blind, randomised, placebo-controlled trial. Lancet 380, 977–985 (2012). https://doi.org/10.1016/S0140-6736(12)60644-8

    Article  Google Scholar 

  99. S. Huang, Z. Hu, P. Wang, Y. Zhang et al., Rat epidermal stem cells promote the angiogenesis of full-thickness wounds. Stem Cell Res. Ther. 11, 344 (2020). https://doi.org/10.1186/s13287-020-01844-y

    Article  CAS  Google Scholar 

  100. P. Wang, Z. Hu, X. Cao, S. Huang et al., Fibronectin precoating wound bed enhances the therapeutic effects of autologous epidermal basal cell suspension for full-thickness wounds by improving epidermal stem cells’ utilization. Stem Cell Res. Ther. 10, 154 (2019). https://doi.org/10.1186/s13287-019-1236-7

    Article  Google Scholar 

  101. P. Foubert, A.D. Gonzalez, S. Teodosescu, F. Berard et al., Adipose-derived regenerative cell therapy for burn wound healing: a comparison of two delivery methods. Adv. Wound Care 5, 288–298 (2016). https://doi.org/10.1089/wound.2015.0672

    Article  Google Scholar 

  102. P. Foubert, D. Zafra, M. Liu, R. Rajoria et al., Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc porcine model. Stem Cell Res. Ther. 8, 261 (2017). https://doi.org/10.1186/s13287-017-0704-1

    Article  CAS  Google Scholar 

  103. L. Zimmerlin, J.P. Rubin, M.E. Pfeifer, L.R. Moore et al., Human adipose stromal vascular cell delivery in a fibrin spray. Cytotherapy 15, 102–108 (2013). https://doi.org/10.1016/j.jcyt.2012.10.009

    Article  CAS  Google Scholar 

  104. U. Hopfner, M.M. Aitzetmueller, P. Neßbach, M.S. Hu et al., Fibrin glue enhances adipose-derived stromal cell cytokine secretion and survival conferring accelerated diabetic wound healing. Stem Cells Int. 2018, 1353085 (2018). https://doi.org/10.1155/2018/1353085

    Article  CAS  Google Scholar 

  105. M.A. Nilforoushzadeh, H. Afzali, A. Raoofi et al., Topical spray of Wharton’s jelly mesenchymal stem cells derived from umbilical cord accelerates diabetic wound healing. J. Cosmet. Dermatol. (2022). https://doi.org/10.1111/jocd.15022

    Article  Google Scholar 

  106. A. Kaminski, C. Klopsch, P. Mark, C. Yerebakan et al., Autologous valve replacement—CD133+ stem cell-plus-fibrin composite-based sprayed cell seeding for intraoperative heart valve tissue engineering. Tissue Eng. C 17, 299–309 (2011). https://doi.org/10.1089/ten.tec.2010.0051

    Article  CAS  Google Scholar 

  107. D. Mori, S. Miyagawa, S. Yajima, S. Saito et al., Cell Spray transplantation of adipose-derived mesenchymal stem cell recovers ischemic cardiomyopathy in a porcine model. Transplantation 102, 2012–2024 (2018). https://doi.org/10.1097/TP.0000000000002385

    Article  Google Scholar 

  108. A.L. Thiebes, S. Albers, C. Klopsch, S. Jockenhoevel et al., Spraying respiratory epithelial cells to coat tissue-engineered constructs. BioRes. Open Access 4(1), 278–287 (2015). https://doi.org/10.1089/biores.2015.0015

    Article  CAS  Google Scholar 

  109. S.Y. Kim, J.K. Burgess, Y. Wang, E.P.W. Kable et al., Atomized human amniotic mesenchymal stromal cells for direct delivery to the airway for treatment of lung injury. J. Aerosol Med. Pulm. Drug Deliv. 29, 514–524 (2016). https://doi.org/10.1089/jamp.2016.1289

    Article  CAS  Google Scholar 

  110. M. Bieber, A.L. Thiebes, C.G. Cornelissen, S. Jockenhoevel et al., Experimental investigation of endoscopic cell spray. At. Sprays 27, 847–858 (2017). https://doi.org/10.1615/AtomizSpr.2017020134

    Article  Google Scholar 

  111. D.M. Schwartz, M.O. Pehlivaner Kara, A.M. Goldstein, H.C. Ott et al., Spray delivery of intestinal organoids to reconstitute epithelium on decellularized native extracellular matrix. Tissue Eng. C 23, 565–573 (2017). https://doi.org/10.1089/ten.tec.2017.0269

    Article  CAS  Google Scholar 

  112. J. Tritz, R. Rahouadj, N. De Isla, N. Charif et al., Designing a three-dimensional alginate hydrogel by spraying method for cartilage tissue engineering. Soft Matter 6, 5165–5174 (2010). https://doi.org/10.1039/c000790k

    Article  CAS  Google Scholar 

  113. T.S. De Windt, L.A. Vonk, J.K. Buskermolen, J. Visser et al., Arthroscopic airbrush assisted cell implantation for cartilage repair in the knee: a controlled laboratory and human cadaveric study. Osteoarthr. Cartil. 23, 143–150 (2015). https://doi.org/10.1016/j.joca.2014.09.016

    Article  Google Scholar 

  114. K. Dijkstra, J. Hendriks, M. Karperien, L.A. Vonk et al., Arthroscopic airbrush-assisted cell spraying for cartilage repair: design, development, and characterization of custom-made arthroscopic spray nozzles. Tissue Eng. C 23, 505–515 (2017). https://doi.org/10.1089/ten.tec.2017.0228

    Article  CAS  Google Scholar 

  115. C.O. Duncan, R.M. Shelton, H. Navsaria, D.S. Balderson et al., In vitro transfer of keratinocytes: comparison of transfer from fibrin membrane and delivery by aerosol spray. J. Biomed. Mater. Res. B 73B, 221–228 (2005). https://doi.org/10.1002/jbm.b.30198

    Article  CAS  Google Scholar 

  116. H. Lee, Outcomes of sprayed cultured epithelial autografts for full-thickness wounds: a single-centre experience. Burns 38, 931–936 (2012). https://doi.org/10.1016/j.burns.2012.01.014

    Article  Google Scholar 

  117. H. Yim, H.T. Yang, Y.S. Cho, C.H. Seo et al., Clinical study of cultured epithelial autografts in liquid suspension in severe burn patients. Burns 37, 1067–1071 (2011). https://doi.org/10.1016/j.burns.2011.03.018

    Article  Google Scholar 

  118. Avita Medical, Instructions for Use—RECELL Autologous Cell Harvesting Device (Avita Medical, Cambridge, 2018), pp.1–37

    Google Scholar 

  119. G. Gravante, M.C. Di Fede, A. Araco, M. Grimaldi et al., A randomized trial comparing RECELL® system of epidermal cells delivery versus classic skin grafts for the treatment of deep partial thickness burns. Burns 33, 966–972 (2007). https://doi.org/10.1016/j.burns.2007.04.011

    Article  CAS  Google Scholar 

  120. F. Wood, L. Martin, D. Lewis, J. Rawlins et al., A prospective randomised clinical pilot study to compare the effectiveness of Biobrane® synthetic wound dressing, with or without autologous cell suspension, to the local standard treatment regimen in paediatric scald injuries. Burns 38, 830–839 (2012). https://doi.org/10.1016/j.burns.2011.12.020

    Article  CAS  Google Scholar 

  121. L. Manning, E.J. Hamilton, E. Raby, P.E. Norman et al., Spray on skin for diabetic foot ulcers: an open label randomised controlled trial. J. Foot Ankle Res. 12, 52 (2019). https://doi.org/10.1186/s13047-019-0362-x

    Article  Google Scholar 

  122. S.V. Mulekar, B. Ghwish, A. AlIssa, A. Al Eisa, Treatment of vitiligo lesions by RECELL® vs. conventional melanocyte–keratinocyte transplantation: a pilot study. Br. J. Dermatol. 158, 45–49 (2007). https://doi.org/10.1111/j.1365-2133.2007.08216.x

    Article  Google Scholar 

  123. V. Cervelli, B. De Angelis, D. Spallone, L. Lucarini et al., Use of a novel autologous cell-harvesting device to promote epithelialization and enhance appropriate pigmentation in scar reconstruction. Clin. Exp. Dermatol. 35, 776–780 (2010). https://doi.org/10.1111/j.1365-2230.2009.03728.x

    Article  CAS  Google Scholar 

  124. A. Klama-Baryła, D. Kitala, W. Łabuś, M. Kraut et al., Autologous and allogeneic skin cell grafts in the treatment of severely burned patients: retrospective clinical study. Transplant. Proc. 50, 2179–2187 (2018). https://doi.org/10.1016/j.transproceed.2017.11.079

    Article  Google Scholar 

  125. A.P. Domaszewska-Szostek, M.O. Krzyżanowska, A.M. Czarnecka, M. Siemionow, Local treatment of burns with cell-based therapies tested in clinical studies. J. Clin. Med. 10, 396 (2021). https://doi.org/10.3390/jcm10030396

    Article  Google Scholar 

  126. Y.G. Hwang, J.W. Lee, K.H. Park, S.H. Han, Allogeneic keratinocyte for intractable chronic diabetic foot ulcers: a prospective observational study. Int. Wound J. 16, 486–491 (2019). https://doi.org/10.1111/iwj.13061

    Article  Google Scholar 

  127. G.C. Gurtner, A.D. Garcia, K. Bakewell, J.B. Alarcon, A retrospective matched-cohort study of 3994 lower extremity wounds of multiple etiologies across 644 institutions comparing a bioactive human skin allograft, TheraSkin, plus standard of care, to standard of care alone. Int. Wound J. 17, 55–64 (2020). https://doi.org/10.1111/iwj.13231

    Article  Google Scholar 

  128. S.S. Venugopal, W. Yan, J.W. Frew, H.I. Cohn et al., A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa. J. Am. Acad. Dermatol. 69, 898-908.e7 (2013). https://doi.org/10.1016/j.jaad.2013.08.014

    Article  CAS  Google Scholar 

  129. H.-J. You, S.-K. Han, Cell therapy for wound healing. J. Korean Med. Sci. 29, 311–319 (2014). https://doi.org/10.3346/jkms.2014.29.3.311

    Article  CAS  Google Scholar 

  130. C. Yoon, J. Lee, H. Jeong, S. Lee et al., Rapid preparation of a noncultured skin cell suspension that promotes wound healing. Cell Tissue Bank 18, 131–141 (2017). https://doi.org/10.1007/s10561-017-9615-8

    Article  CAS  Google Scholar 

  131. H. Yim, H.T. Yang, Y.S. Cho, D. Kim et al., A clinical trial designed to evaluate the safety and effectiveness of a thermosensitive hydrogel-type cultured epidermal allograft for deep second-degree burns. Burns 40, 1642–1649 (2014). https://doi.org/10.1016/j.burns.2014.02.002

    Article  Google Scholar 

  132. Á. Sierra-Sánchez, T. Montero-Vilchez, M.I. Quiñones-Vico, M. Sanchez-Diaz et al., Current advanced therapies based on human mesenchymal stem cells for skin diseases. Front. Cell Dev. Biol. 9, 643125 (2021). https://doi.org/10.3389/fcell.2021.643125

    Article  Google Scholar 

  133. A. Nourian Dehkordi, F. Mirahmadi Babaheydari, M. Chehelgerdi, S. Raeisi Dehkordi, Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res. Ther. 10, 111 (2019). https://doi.org/10.1186/s13287-019-1212-2

    Article  CAS  Google Scholar 

  134. B.F. Seo, S.-N. Jung, The immunomodulatory effects of mesenchymal stem cells in prevention or treatment of excessive scars. Stem Cells Int. 2016, 6937976 (2016). https://doi.org/10.1155/2016/6937976

    Article  CAS  Google Scholar 

  135. S. Kanji, H. Das, Advances of stem cell therapeutics in cutaneous wound healing and regeneration. Mediat. Inflamm. 2017, 5217967 (2017). https://doi.org/10.1155/2017/5217967

    Article  CAS  Google Scholar 

  136. A. Nuschke, Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis 10, 29–37 (2014). https://doi.org/10.4161/org.27405

    Article  Google Scholar 

  137. M.R. Pourfath, A. Behzad-Behbahani, S.S. Hashemi, A. Derakhsahnfar et al., Monitoring wound healing of burn in rat model using human Wharton’s jelly mesenchymal stem cells containing cGFP integrated by lentiviral vectors. Iran. J. Basic Med. Sci. 21, 70–76 (2018). https://doi.org/10.22038/ijbms.2017.19783.5212

    Article  Google Scholar 

  138. J. Hendriks, C. Willem Visser, S. Henke, J. Leijten et al., Optimizing cell viability in droplet-based cell deposition. Sci. Rep. 5, 11304 (2015). https://doi.org/10.1038/srep11304

    Article  CAS  Google Scholar 

  139. R. Esteban-Vives, M.T. Young, T. Zhu, J. Beiriger et al., Calculations for reproducible autologous skin cell-spray grafting. Burns 42, 1756–1765 (2016). https://doi.org/10.1016/j.burns.2016.06.013

    Article  Google Scholar 

  140. J. Hua, L.E. Erickson, T.Y. Yiin, L.A. Glasgow, A review of the effects of shear and interfacial phenomena on cell viability. Crit. Rev. Biotechnol. 13, 305–328 (1993). https://doi.org/10.3109/07388559309075700

    Article  CAS  Google Scholar 

  141. N. Salehi-Nik, G. Amoabediny, B. Pouran, H. Tabesh et al., Engineering parameters in bioreactor’s design: a critical aspect in tissue engineering. BioMed. Res. Int. 2013, 762132 (2013). https://doi.org/10.1155/2013/762132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Council for Scientific and Technological Development (CNPq, Brazil, Process #314724/2021-4), the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil, Finance Code 001) and the São Paulo Research Foundation (FAPESP, Brazil, Process #21/00781-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ângela Maria Moraes.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozaki, A.P.M., de Melo Lima, M.H. & Moraes, Â.M. Sprayable Bioactive Dressings for Skin Wounds: Recent Developments and Future Prospects. Biomedical Materials & Devices 1, 569–586 (2023). https://doi.org/10.1007/s44174-022-00047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00047-8

Keywords

Navigation