Skip to main content

Advertisement

Log in

Lipid-Based Drug Delivery System (LBDDS): An Emerging Paradigm to Enhance Oral Bioavailability of Poorly Soluble Drugs

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Low-oral bioavailability as a consequence of low-water solubility of drugs is challenging for formulation scientists in the development of new pharmaceutical products. This review aims to highlight relevant considerations when implementing a rational strategy for the development of lipid-based oral drug delivery systems and to discuss shortcomings and challenges to the current classification of these delivery systems such as nanoemulsion, Solid lipid nanoparticle (SLN), Nanostructured lipid carriers (NLC), Self-emulsifying drug delivery system (SEDDS). Lipid-based drug delivery systems consist of a diverse group of formulations, each consisting of varying functional and structural properties that are amenable to modifications achieved by varying the composition of lipid excipients and other additives thereby facilitating the bioavailability of poorly water-soluble drugs. In addition, lipid nanoparticles may also protect the loaded drugs from chemical and enzymatic degradation and gradually release drug molecules from the lipid matrix into the blood, resulting in improved therapeutic profiles compared to free drugs. Therefore, due to their physiological and biodegradable properties, lipid molecules may decrease adverse side effects and chronic toxicity of the drug-delivery systems when compared to others of polymeric nature. Accordingly, the present review is mainly centred on the various lipid-based drug delivery system and excipients used in lipid-based drug delivery systems (LBDDS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Poonia, R. Kharb, V. Lather, D. Pandita, Nanostructured lipid carriers: Versatile oral delivery vehicle. Future Sci. OA 2(3), 135 (2016)

    Article  Google Scholar 

  2. K. Pathak, S. Raghuvanshi, Oral Bioavailability: Issues and Solutions via Nanoformulations. Clin. Pharmacokinet. 54(4), 325–357 (2015)

    Article  CAS  Google Scholar 

  3. P.P. Desai, A.A. Date, V.B. Patravale, Overcoming poor oral bioavailability using nanoparticle formulations—opportunities and limitations. Drug Discov. Today. 9(2), e87–e95 (2012)

    Article  CAS  Google Scholar 

  4. A. Müllertz, A. Ogbonna, S. Ren, T. Rades, New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J. Pharm. Pharmacol. 62(11), 1622–1636 (2010)

    Article  Google Scholar 

  5. L.X. Yu, G.L. Amidon, J.E. Polli, H. Zhao, M.U. Mehta, D.P. Conner et al., (2002) Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res. 19(7), 921–925 (2002)

    Article  CAS  Google Scholar 

  6. G.L. Amidon, H. Lennernäs, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 12(3), 413–420 (1995)

    CAS  Google Scholar 

  7. R.K. Shirodkar, L. Kumar, S. Mutalik, S. Lewis, Solid lipid nanoparticles and nanostructured lipid carriers: emerging lipid-based drug delivery systems. Pharm Chem J. 53(5), 440–453 (2019)

    Article  CAS  Google Scholar 

  8. D.K. Patel, R. Kesharwani, V. Kumar, Lipid nanoparticle topical and transdermal delivery: a review on production, penetration mechanism to skin. Int. J. Pharm. Investig. 9(4), 148–153 (2019)

    Article  CAS  Google Scholar 

  9. D. Patel, V. Kumar, R. Kesharwani, B. Mazumdar, Lipid nanoparticle a novel carrier for cosmetics and topical preparation: a review. Inven Rapid Cosmeceuticals. 3, 1–6 (2015)

    Google Scholar 

  10. J.A. Arnott, S.L. Planey, The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 7(10), 863–875 (2012)

    Article  CAS  Google Scholar 

  11. B. Testa, P. Crivori, M. Reist, P.A. Carrupt, The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Perspect. Drug Discov. Des. 19(1), 179–211 (2000)

    Article  CAS  Google Scholar 

  12. P. Leeson, Drug discovery: chemical beauty contest. Nature 481(7382), 455–456 (2012)

    Article  CAS  Google Scholar 

  13. C.W. Pouton, C.J.H. Porter, Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv. Drug Deliv. Rev. 60(6), 625–637 (2008)

    Article  CAS  Google Scholar 

  14. C.J.H. Porter, C.W. Pouton, J.F. Cuine, W.N. Charman, Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv. Drug Deliv. Rev. 60(6), 673–691 (2008)

    Article  CAS  Google Scholar 

  15. C.M. O’Driscoll, B.T. Griffin, Biopharmaceutical challenges associated with drugs with low aqueous solubility-The potential impact of lipid-based formulations. Adv. Drug Deliv. Rev. 60(6), 617–624 (2008)

    Article  Google Scholar 

  16. H.D. Williams, P. Sassene, K. Kleberg, J.C. Bakala-N’Goma, M. Calderone, V. Jannin et al., Toward the establishment of standardized in vitro tests for lipid-based formulations, Part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J. Pharm. Sci. 101(9), 3360–3380 (2012)

    Article  CAS  Google Scholar 

  17. K.M. Wasan, Formulation and physiological and biopharmaceutical issues in the development of oral lipid-based drug delivery systems. Drug Dev. Ind. Pharm. 27(4), 267–276 (2001)

    Article  CAS  Google Scholar 

  18. M. Kuentz, Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discov. Today: Technol. 9(2), e97–e104 (2012)

    Article  CAS  Google Scholar 

  19. F. Ibrahim, P. Gershkovich, O. Sivak, E.K. Wasan, K.M. Wasan, Pharmacokinetics and tissue distribution of amphotericin B following oral administration of three lipid-based formulations to rats. Drug Dev. Ind. Pharm. 39(9), 1277–1283 (2013)

    Article  CAS  Google Scholar 

  20. J.S.L. Tan, C. Roberts, N. Billa, Pharmacokinetics and tissue distribution of an orally administered mucoadhesive chitosan-coated amphotericin B-Loaded nanostructured lipid carrier (NLC) in rats. J. Biomater. Sci. Polym. Ed. 31(20), 141–154 (2020)

    Article  CAS  Google Scholar 

  21. J.B. Cannon, M.A. Long, Emulsions, microemulsions, and lipid-based drug delivery systems for drug solubilization and delivery, part II. Oral Appl. 16, 227–254 (2008)

    Google Scholar 

  22. C.W. Pouton, Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and self microemulsifying drug delivery systems. Eur. J. Pharm. Sci. 11(2), S93–S98 (2000)

    Article  CAS  Google Scholar 

  23. J.D. Hauss, Oral lipid-based formulations: enhancing the bioavailability of poorly Water-soluble drugs. Drugs Pharm. Sci. 170, 1–85 (2013)

    Google Scholar 

  24. C.T. Phan, Intestinal lipid absorption and transport. Front Biosci. 6(3), 299–319 (2001)

    Article  Google Scholar 

  25. E. Ros, Intestinal absorption of triglyceride and cholesterol: Dietary and pharmacological inhibition to reduce cardiovascular risk. Atherosclerosis 151(2), 357–379 (2000)

    Article  CAS  Google Scholar 

  26. S. Kalepu, M. Manthina, V. Padavala, Oral lipid-based drug delivery systems: an overview. Acta Pharm. Sin. B. 3(6), 361–372 (2013)

    Article  Google Scholar 

  27. R. Ghadi, N. Dand, BCS class IV drugs: highly notorious candidates for formulation development. J. Controlled Release. 248, 71–95 (2017)

    Article  CAS  Google Scholar 

  28. D. Wagner, H. Spahn-Langguth, A. Hanafy, A. Koggel, P. Langguth, Intestinal drug efflux: formulation and food effects. Adv. Drug Deliv. Rev. 50, S13–S31 (2001)

    Article  CAS  Google Scholar 

  29. P. Gershkovich, A. Hoffman, Effect of a high-fat meal on absorption and disposition of lipophilic compounds: The importance of degree of association with triglyceride-rich lipoproteins. Eur. J. Pharm. Sci. 32(1), 24–32 (2007)

    Article  CAS  Google Scholar 

  30. E.A. Fouad, M. El-Badry, G.M. Mahrous, I.A. Alsarra, Z. Alashbban, F.K. Alanazi, In vitro investigation for embedding dextromethorphan in lipids using spray drying. Dig. J. Nanomater Biostruct. 6, 1129 (2011)

    Google Scholar 

  31. R. Litschel, GAS: management of ZFB and A. FPS 31(4), 368–375 (2015)

    CAS  Google Scholar 

  32. E.C. Umeyor, F.C. Kenechukwu, J.D. Ogbonna, S.A. Chime, A. Attama, Preparation of novel solid lipid microparticles loaded with gentamicin and its evaluation in vitro and in vivo. J. Microencapsul. 29(3), 296–307 (2012)

    Article  CAS  Google Scholar 

  33. S. Khan, S. Baboota, J. Ali, R.S. Narang, J.K. Narang, Chlorogenic acid stabilized nanostructured lipid carriers (NLC) of atorvastatin: Formulation, design and in vivo evaluation. Drug Dev. Ind. Pharm. 42(2), 209–220 (2016)

    Article  CAS  Google Scholar 

  34. H.N. Joshi, N. Shah, Review of lipids in pharmaceutical drug delivery systems: part 2. Am. Pharm. Rev. 8(5), 120 (2005)

    CAS  Google Scholar 

  35. C.J.H. Porter, N.L. Trevaskis, W.N. Charman, Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 6(3), 231–248 (2007)

    Article  CAS  Google Scholar 

  36. A. Chime, Lipid-based drug delivery systems (LDDS): Recent advances and applications of lipids in drug delivery. Afr. J. Pharm. Pharmacol. 7(48), 3034–3059 (2013)

    Article  CAS  Google Scholar 

  37. L. Montenegro, F. Lai, A. Offerta, M.G. Sarpietro, L. Micicchè, A.M. Maccioni et al., From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol. 32, 100–112 (2016)

    Article  CAS  Google Scholar 

  38. H. Shrestha, R. Bala, S. Arora, Lipid-based drug delivery systems. J Pharm. (2014)

  39. T. Lian, R.J.Y. Ho, Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 90(6), 667–680 (2001)

    Article  CAS  Google Scholar 

  40. A. Nida Suhail, W. Khuzaim Alzahrani, J. Basha, N. Kizilbash, A. Zaidi, J. Ambreen, H.M. Khachfe, Microemulsions: unique properties, pharmacological applications, and targeted drug delivery. Front. Nanotechnol. 3, 754889 (2021)

    Article  Google Scholar 

  41. C. Lovelyn, A.A. Attama, Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol. 2(5), 626 (2011)

    Article  CAS  Google Scholar 

  42. Y. Singh, J.G. Meher, K. Raval, F.A. Khan, M. Chaurasia, N.K. Jain et al., Nanoemulsion: Concepts, development and applications in drug delivery. J. Controll. Release 252, 28–49 (2017)

    Article  CAS  Google Scholar 

  43. S. Kotta, A.W. Khan, K. Pramod, S.H. Ansari, R.K. Sharma, Ali J Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv. 9(5), 585–598 (2012)

    Article  CAS  Google Scholar 

  44. S. Choudhury, S. Dasgupta, D.K. Patel, Y.R. Ramani, S.K. Ghosh, B. Mazumder, Nanoemulsion as a Carrier for Topical Delivery of Aceclofenac (Springer, New York, 2013)

    Book  Google Scholar 

  45. D.J. McClements, Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 8(6), 1719–1729 (2012)

    Article  CAS  Google Scholar 

  46. Gupta A. Nanoemulsions. In: Nanoparticles for biomedical applications: fundamental concepts, biological interactions and clinical applications. (2019)

  47. P. Shah, D. Bhalodia, P. Shelat, Nanoemulsion: a pharmaceutical review. Systematic Rev. Pharm. 1, 158 (2010)

    Google Scholar 

  48. V.K. Rai, N. Mishra, K.S. Yadav, N.P. Yadav, Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Controll. Release 270, 203–225 (2018)

    Article  CAS  Google Scholar 

  49. A.A. Attama, M.A. Momoh, P.F. Builders, Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. Recent Adv. Novel Drug Carrier Syst. 5, 107–140 (2012)

    Google Scholar 

  50. A.A. Attama, M.A. Momoh, P.F. Builders, Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development in recent advance in novel drug carrrier systems. INTECH 5, 107–140 (2012)

    Google Scholar 

  51. P. Patil, P. Joshi, Paradkar A (20004) Effect of formulation variables on preparation and evaluation of gelled self-emulsifying drug delivery system (SEDDS) of ketoprofen. AAPS PharmSciTech 5(3), 43–50 (2004)

    Article  Google Scholar 

  52. B.S.M. Zadeh, S. Dahanzadeh, F. Rahim, Preparation and evaluation of the self emulsifying drug delivery system containing loratadine. Int. J. Adv. Pharm. Sci. 1(3), 15 (2010)

    Google Scholar 

  53. Y. Zhang, R. Wang, J. Wu, Q. Shen, Characterization and evaluation of self-microemulsifying sustained-release pellet formulation of puerarin for oral delivery. Int J Pharm. 427(2), 337–344 (2012)

    Article  CAS  Google Scholar 

  54. Singh S, Singh SK, Vuddanda PR, Srivastava AK. A comparison between use of spray and freeze drying techniques for preparation of solid self-microemulsifying formulation of valsartan and in vitro and in vivo evaluation. Biomed Res Int. (2013)

  55. S. Martins, B. Sarmento, D.C. Ferreira, E.B. Souto, Lipid-based colloidal carriers for peptide and protein delivery - Liposomes versus lipid nanoparticles. Int J Nanomed. 2(4), 595 (2007)

    CAS  Google Scholar 

  56. H. Muller, R Shegokar, M. Keck, 20 years of lipid nanoparticles (SLN & NLC): present state of development & industrial applications. Curr. Drug Discov. Technol. 8(3), 207–227 (2011)

    Article  Google Scholar 

  57. M. Rawat, D. Singh, S. Saraf, S. Saraf, Nanocarriers: promising vehicle for bioactive drugs. Biol. Pharm. Bull. 29(9), 1790–1798 (2006)

    Article  CAS  Google Scholar 

  58. Feix JB. Liposomes: A Practical Approach. Second Edition. Practical Approach Series, Volume 264. Edited by Vladimir Torchilin and Volkmar Weissig. Oxford: Oxford University Press. 2003. Q Rev Biol. (2004)

  59. T. Karamanidou, V. Bourganis, O. Kammona, C. Kiparissides, Lipid-based nanocarriers for the oral administration of biopharmaceutics. Nanomedicine 11(22), 3009–3032 (2016)

    Article  CAS  Google Scholar 

  60. Y. Gan, X. Li, D. Chen, C. Le, C. Zhu, L. Hovgaard et al., Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake. Int. J. Nanomed. 6, 3151 (2011)

    Article  Google Scholar 

  61. A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset, H. Fessi, Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol. 1(2), 147–168 (2012)

    Article  CAS  Google Scholar 

  62. P. Severino, T. Andreani, A.S. Macedo, J.F. Fangueiro, M.H.A. Santana, A.M. Silva et al. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv. (2012)

  63. R.H. Müller, C. Freitas, A. Zurmühlen, W. Mehnert, Solid lipid nanoparticles (SLN) for controlled drug delivery. Eur. J. Pharm. Sci. 45(2), 149–155 (1996)

    Google Scholar 

  64. V. Kakkar, S. Singh, D. Singla, I.P. Kaur, Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol. Nutr. Food Res. 55(3), 495–503 (2011)

    Article  CAS  Google Scholar 

  65. R. Kesharwani, A. Sachan, S. Singh, D. Patel, Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib. J. Appl. Pharm. Sci. 6(10), 124–131 (2016)

    Article  CAS  Google Scholar 

  66. D. Patel, R. Kesharwani, P.S. Gupta, Development & screening approach for lipid nanoparticle: a review. Asian J. Pharm. Res. Dev. 15, 1–7 (2015)

    Google Scholar 

  67. D.K. Patel, S. Tripathy, S.K. Nair, R. Kesharwani, Nanostructured lipid carrier (NLC) a modern approach for topical delivery: a review. World J. Pharm. Pharma. Sci. 2, 921–938 (2013)

    CAS  Google Scholar 

  68. D.K. Patel, R. Kesharwani, V. Kumar, Etodolac loaded solid lipid nanoparticle based topical gel for enhanced skin delivery. Biocatal Agric. Biotechnol. 29, 101810 (2020)

    Article  Google Scholar 

  69. S.A. Wissing, O. Kayser, R.H. Müller, Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 56(9), 257–1272 (2004)

    Article  Google Scholar 

  70. T.B. Dudala, P.R. Yalavarthi, H.C. Vadlamudi, J. Thanniru, G. Yaga, N.L. Mudumala, V.K. Pasupati, A perspective overview on lipospheres as lipid carrier systems. Int. J. Pharm. Invest. 4(4), 149–154 (2014)

    Article  Google Scholar 

  71. S. Scalia, P.M. Young, D. Traini, Solid lipid microparticles as an approach to drug delivery. Expert Opin. Drug Deliv. 12(4), 583–599 (2014)

    Article  Google Scholar 

  72. P. Jaiswal, B. Gidwani, A. Vyas, Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol. 44(1), 27–40 (2016). https://doi.org/10.3109/21691401.2014.909822

    Article  CAS  Google Scholar 

  73. S. Moghassemi, A. Hadjizadeh, Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J. Controll. Release 185, 22–36 (2014). https://doi.org/10.1016/j.jconrel.2014.04.015

    Article  CAS  Google Scholar 

  74. U.N. Wiesmann, S. DiDonato, N.N. Herschkowitz, Effect of chloroquine on cultured fibroblasts: release of lysosomal hydrolases and inhibition of their uptake. Biochem. Biophys. Res. Commun. 66(4), 1338–1343 (1975). https://doi.org/10.1016/0006-291x(75)90506-9

    Article  CAS  Google Scholar 

  75. Bruschi ML, ed. Strategies to modify the drug release from pharmaceutical systems. Elsevier. https://doi.org/10.1016/c2014-0-02342-82015

  76. Shegokar R, ed. Delivery of drugs. Elsevier. https://doi.org/10.1016/c2018-0-02191-x (2020)

  77. E. Bombardelli, M. Spelta, Phospholipid-polyphenol complexes: a new concept in skin care ingredients. Cosm Toil. 106(3), 69–76 (1991)

    CAS  Google Scholar 

  78. O. Vaizoglu, P.P. Speiser, Pharmacosomes: a novel drug delivery system. Acta Pharm. Suec. 23, 163–172 (1986)

    CAS  Google Scholar 

  79. S.S. Biju, S. Talegaonkar, P.R. Mishra et al., Vesicular systems: an overview. Indian J Pharm Sci. 68, 141–153 (2006)

    Article  CAS  Google Scholar 

  80. A. Singh, V.A. Saharan, M. Singh, A. Bhandari, Phytosome: drug delivery system for polyphenolic phytoconstituents. Iran J. Pharm. Res. 7(4), 209–219 (2011)

    CAS  Google Scholar 

  81. J. Khan, A. Alexander, S. Saraf et al., Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J. Control Release. 168(1), 50–60 (2013). https://doi.org/10.1016/j.jconrel.2013.02.025

    Article  CAS  Google Scholar 

  82. J. Patel, R. Patel, K. Khambholja, N. Patel, An overview of phytosomes as an advanced herbal drug delivery system. Asian J. Pharm. Sci. 4(6), 363–371 (2009)

    Google Scholar 

  83. M.S. Sikarwar, S. Sharma, A.K. Jain et al., Preparation, characterization and evaluation of marsupsin–phospholipid complex. AAPS PharmSciTech 9(1), 129–137 (2008). https://doi.org/10.1208/s12249-007-9020-x

    Article  CAS  Google Scholar 

  84. R. Sachan, T. Parashar, S. Vishal Singh, G. Singh, S. Tyagi, C. Patel, A. Gupta, Transfersomes: a novel tool for transdermal drug delivery system. Int. J. Res. Dev. Pharm. Life Sci. 2(2), 309–316 (2013)

    CAS  Google Scholar 

  85. R.V. Kombath, M.S. Kumar, S. Anbazhagan, S. Sandhya, P. Saikumar, T.R. Reddy, D. Banji, Critical issues related to transfersomes – novel vesicular system. Acta Sci. Pol. Technol. Aliment. 11(1), 67–82 (2012)

    Google Scholar 

  86. R. Kumar, M. Singh, R. Bala, N. Seth, A.C. Rana, Transferosomes : a novel approach for trans dermal drug delivery. Int. Res. J. Pharm. 3(1), 20–24 (2012)

    CAS  Google Scholar 

  87. S.N. Patel, N. Patel, K.R. Patel, N.M. Patel, A vesicular transdermal delivery system for enhance drug permeation-ethosomes and transfeosomed. Int. Pharm. Sci. 2(2), 24–34 (2012)

    CAS  Google Scholar 

  88. P. Verma, K. Pathak, Therapeutic and cosmeceutical potential of ethosomes: an overview. J. Adv. Pharm. Technol. Res. 1(3), 274–282 (2010). https://doi.org/10.4103/0110-5558.72415

    Article  CAS  Google Scholar 

  89. S.R. Nakka, M.S. Hui, F.P. Chong, Y.C. Foo, R. Rajabalaya, Formulation and in vitro evaluation of ethosomes as vesicular carrier for enhanced topical delivery of isotretinoin. Int. J. Drug Deliv. 5, 28–34 (2013)

    Google Scholar 

  90. L.N. Shen, Y.T. Zhang, Q. Wang, L. Xu, N.P. Feng, Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int. J. Pharm. 460(1–2), 280–288 (2014)

    Article  CAS  Google Scholar 

  91. C. Fan, X. Li, Y. Zhou, Y. Zhao, S. Ma, W. Li, Y. Liu et al., Enhanced topical delivery of tetrandrine by ethosomes for treatment of artritis. BioMed Res. Int. 15, 1–13 (2013)

    CAS  Google Scholar 

  92. E.R. Bendas, M.I. Tadros, Enhanced transdermal delivery of salbutamol sulfate via ethosomes. Am. Assoc. Pharm. Sci. Pharm Sci. Tech. 8(4), E1–E8 (2007)

    Google Scholar 

  93. A.R. Rathore, H. Khambete, S. Jain, Preparation and characterization of repaglinide loaded ethosomal gel for the treatment of NIDDM. Int. J. Pharm. Biol. Archiv. 4(2), 385–390 (2013)

    Google Scholar 

  94. R.G.S. Maheshwari, R.K. Tekade, P.A. Sharma, G. Darwhekar, A. Tyagi, R.P. Patel et al., Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment. Saudi Pharm. J. 20, 161–170 (2012)

    Article  Google Scholar 

  95. P.K. Mukherjee, A. While, Integrated approaches towards drug development from ayurveda and other indian system of medicine. J. Ethnopharmacol. 10325–35, 2006 (2006)

    Google Scholar 

  96. N.K. Jain, Controlled and Novel Drug Delivery. published by CBS publishers &Distributors, Firsrt edition reprint. 24: 101–105 (2009)

  97. C.W. Yie, Novel Drug Delivery Systems. published by Informa Healthcare, Second Edition Revised and Expanded pp. 301–306

  98. T. Surendra, P.K. Dilip, B. Lipika, N.K. Suresh, A review on phytosomes characterization, advancement & potential for transdermal application. J. Drug Deliv. Therapeut. 3(3), 147–152 (2013)

    Google Scholar 

  99. K. Čerpnjak, A. Zvonar, M. Gašperlin, F. Vrečer, Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm. 63(4), 427–445 (2013)

    Article  Google Scholar 

  100. K. Mohsin, A.A. Shahba, F.K. Alanazi, Lipid based self emulsifying formulations for poorly water soluble drugs-An excellent opportunity. Ind. J. Pharm. Edu. Res. 46(2), 88–96 (2012)

    Google Scholar 

  101. B.K. Nanjwade, D.J. Patel, R.A. Udhani, F.V. Manvi, Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci. Pharm 79(4), 705–728 (2011)

    Article  CAS  Google Scholar 

  102. D.M. Small, A classification of biologic lipids based upon their interaction in aqueous systems. J. Am. Oil. Chem. Soc. 45(3), 108–119 (1968)

    Article  CAS  Google Scholar 

  103. S. Kumar, S. Kumar Gupta, S.P. Kumar, Self-emulsifying drug delivery systems (SEDDS) for oral delivery of lipid based formulations. Afr. J. Basic Appl. Sci. 4, 7–11 (2012)

    CAS  Google Scholar 

  104. P. Jaiswal, G. Aggarwal, BIOAVAILABILITY ENHANCDEMENT OF POORLY SOLUBLE DRUGS BY SMEDDS: A REVIEW. J Drug Deliv Ther. 3(1), 14 (2013)

    Google Scholar 

  105. M. Stuchlík, S. Zák, Lipid-based vehicle for oral drug delivery. Biomed. Pap Med. Fac. Univ. Palacky. Olomouc. Czech Repub. 145(2), 17–26 (2001)

    Article  Google Scholar 

  106. H. Harde, M. Das, S. Jain, Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv. 8(11), 1407–1424 (2011)

    Article  CAS  Google Scholar 

  107. D.J. Hauss, Oral lipid-based formulations. Adv. Drug Deliv. Rev. 59(7), 667–676 (2007)

    Article  CAS  Google Scholar 

  108. T.M. Allen, P.R. Cullis, Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013)

    Article  CAS  Google Scholar 

  109. S. Ganta, M. Talekar, A. Singh, T.P. Coleman, M.M. Amiji, Nanoemulsions in translational research: opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech 15(3), 694–708 (2014)

    Article  CAS  Google Scholar 

  110. A. Garud, D. Singh, N. Garud, Solid lipid nanoparticles (SLN): method, characterization and applications. Int. Curr. Pharm. J. 1(11), 384–393 (2012)

    Article  CAS  Google Scholar 

  111. P.P. Constantinides, K.M. Wasan, Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: In vitro/in vivo case studies. J. Pharm. Sci. 96(2), 235–248 (2007)

    Article  CAS  Google Scholar 

  112. P. Baghel, A. Roy, S. Verma, T. Satapathy, S. Bahadur, Amelioration of lipophilic compounds in regards to bioavailability as self-emulsifying drug delivery system (SEDDS). Futur. J. Pharm. Sci. 6(1), 1–11 (2020)

    Article  Google Scholar 

  113. J. Ahmad, K. Kohli, S.R. Mir, S. Amin, Lipid based nanocarriers for oral delivery of cancer chemotherapeutics: an insight in the intestinal lymphatic transport. Drug Deliv Lett. 3(1), 38–46 (2013)

    Article  CAS  Google Scholar 

  114. Materials, process, and manufacturing considerations for lipid-based hard-capsule formats. In: Oral Lipid-Based Formulations. (2020)

  115. S. Xie, L. Zhu, Z. Dong, Y. Wang, X. Wang, W.Z. Zhou, Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles. Int. J. Nanomed. 6, 547 (2011)

    CAS  Google Scholar 

  116. M. Shah, K. Chuttani, A.K. Mishra, K. Pathak, Oral solid compritol 888 ATO nanosuspension of simvastatin: optimization and biodistribution studies. Drug Dev. Ind. Pharm. 37(5), 526–537 (2011)

    Article  CAS  Google Scholar 

  117. D. Patel, S. Dasgupta, S. Dey, Y. Roja Ramani, S. Ray, B. Mazumder, Nanostructured lipid carriers (NLC)-based gel for the topical delivery of aceclofenac: Preparation, characterization, and in vivo evaluation. Sci Pharm. 80(3), 749–764 (2012)

    Article  CAS  Google Scholar 

  118. S. Chakraborty, D. Shukla, P.R. Vuddanda, B. Mishra, S. Singh, Utilization of adsorption technique in the development of oral delivery system of lipid based nanoparticles. Colloids Surf. B. 81(2), 563–569 (2010)

    Article  CAS  Google Scholar 

  119. C.J.H. Porter, W.N. Charman, In vitro assessment of oral lipid based formulations. Adv. Drug Deliv. Rev. 50(1), S127–S147 (2001)

    Article  CAS  Google Scholar 

  120. L. Wei, P. Sun, S. Nie, W. Pan, Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev. Ind. Pharm. 31(8), 785–794 (2005)

    Article  CAS  Google Scholar 

  121. S. Prabhu, M. Ortega, C. Ma, Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. Int. J. Pharm. 301(1–2), 209–216 (2005)

    Article  CAS  Google Scholar 

  122. G.A. Edwards, C.J.H. Porter, S.M. Caliph, S. Khoo, W.N. Charman, Animal models for the study of intestinal lymphatic drug transport. Adv. Drug Deliv. Rev. 50(1–2), 45–60 (2001)

    Article  CAS  Google Scholar 

  123. M. Rawat, D. Singh, S. Saraf, S. Saraf, Lipid carriers: a versatile delivery vehicle for proteins and peptides. Yakugaku Zasshi 128(2), 269–280 (2008)

    Article  CAS  Google Scholar 

  124. J. Almeida, E. Souto, Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 59(6), 478–490 (2007)

    Article  CAS  Google Scholar 

  125. W. Choi, J. Kim, S. Choi, J. Park, W.S. Ahn, C. Kim, Low toxicity of cationic lipid-based emulsion for gene transfer. Biomaterials 25(27), 5893–5903 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohi Kesharwani.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesharwani, R., Jaiswal, P., Patel, D.K. et al. Lipid-Based Drug Delivery System (LBDDS): An Emerging Paradigm to Enhance Oral Bioavailability of Poorly Soluble Drugs. Biomedical Materials & Devices 1, 648–663 (2023). https://doi.org/10.1007/s44174-022-00041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00041-0

Keywords

Navigation