Skip to main content
Log in

A Short Review on Conducting Polymer Nanocomposites

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Conducting polymer nanocomposites are a class of hybrid materials synthesized using conducting polymers with some inorganic materials of different sizes and nature using some chemical or electrochemical techniques giving rise to a new hybrid material with fascinating properties and significant application potential. Conducting polymer nanocomposites has emerged as a boost and opened new doors for researchers in wide applications in the field of optoelectronic devices, batteries, electrochromic devices, biomedical materials, and devices such as sensing, imaging, etc. In the present review, a brief yet comprehensive overview of the concept of conductive polymer nanocomposites is provided with the synthesis of various conducting polymer nanocomposites and their derivatives along with their applications in various fields.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Ref. [119] with permission from Taylor & Francis

Fig. 2
Fig. 3

Reproduced from Ref. [80] with permission

Fig. 4

Reproduced from Ref. [89] with permission

Fig. 5

Reproduced from Ref. [94] with permission

Fig. 6

Reproduced from Ref. [94] with permission

Fig. 7

Reproduced from Ref. [98] with permission

Fig. 8

Reproduced from Ref. [110] with permission

Similar content being viewed by others

References

  1. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH)x. J. Chem. Soc. Chem. Commun. (1977). https://doi.org/10.1039/c39770000578

    Article  Google Scholar 

  2. D. Khokhar, S. Jadoun, S. Surabhi, D.V. Morales, J.-R. Jeong, An experimental and theoretical study of copolymerization of o-phenylenediamine and thiophene. Eur. Polym. J. (2022). https://doi.org/10.1016/j.eurpolymj.2022.111423

    Article  Google Scholar 

  3. S. Jadoun, U. Riaz, V. Budhiraja, Biodegradable conducting polymeric materials for biomedical applications: a review. Med. Devices Sens. (2020). https://doi.org/10.1002/mds3.10141

    Article  Google Scholar 

  4. N. Kumari Jangid, S. Jadoun, N. Kaur, A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. Eur. Polym. J. (2020). https://doi.org/10.1016/j.eurpolymj.2020.109485

    Article  Google Scholar 

  5. T. Wang, L. Yan, Y. He, S.I. Alhassan, H. Gang, B. Wu, L. Jin, H. Wang, Application of polypyrrole-based adsorbents in the removal of fluoride: a review. RSC Adv. 12, 3505–3517 (2022)

    CAS  Google Scholar 

  6. L. Ye, H. Ke, Y. Liu, The renaissance of polythiophene organic solar cells. Trends Chem. 3, 1074–1087 (2021)

    CAS  Google Scholar 

  7. I. Göktürk, D. Çimen, M.A. Özbek, F. Yılmaz, A. Denizli, Chapter 12—Cellulose-based nanobiosorbents: an insight, in Micro Nano Technology. ed. by A. Denizli, N. Ali, M. Bilal, A. Khan, T.A.B.T.-N.-B. for D. of W. Nguyen Air, and Soil Pollution (Elsevier, Amsterdam, 2022), pp.251–273. https://doi.org/10.1016/B978-0-323-90912-9.00012-5

    Chapter  Google Scholar 

  8. D. Çimen, I. Göktürk, M. Çalışır, F. Yılmaz, A. Denizli, Chapter 1—Nano-biosorbents for contaminant removal: an introduction, in Micro Nano Technology. ed. by A. Denizli, N. Ali, M. Bilal, A. Khan, T.A.B.T.-N.-B. for D. of W. Nguyen Air, and Soil Pollution (Elsevier, Amsterdam, 2022), pp.3–28. https://doi.org/10.1016/B978-0-323-90912-9.00001-0

    Chapter  Google Scholar 

  9. S. Jadoun, U. Riaz, Biohybrid solar cells. Fundam. Sol. Cell Des. (2021). https://doi.org/10.1002/9781119725022.ch5

    Article  Google Scholar 

  10. S. Jadoun, U. Riaz, Conjugated polymer light-emitting diodes. Polym. Light. Devices Displays. (2020). https://doi.org/10.1002/9781119654643.ch4

    Article  Google Scholar 

  11. S. Jadoun, D.S. Rathore, U. Riaz, N.P.S. Chauhan, Tailoring of conducting polymers via copolymerization-a review. Eur. Polym. J. 155, 110561 (2021)

    CAS  Google Scholar 

  12. F. Soysal, Z. Çıplak, B. Getiren, C. Gökalp, N. Yıldız, Synthesis of GO-Fe3O4-PANI nanocomposite with excellent NIR absorption property. Colloids Surf. A 578, 123623 (2019)

    CAS  Google Scholar 

  13. E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J. Med. Chem. 63, 1–22 (2020). https://doi.org/10.1021/acs.jmedchem.9b00803

    Article  CAS  Google Scholar 

  14. N.H. Nazri, Y. Kumar, M.A. Ramlan, M.H. MohammadKassim, M.S. Hossain, N.H. MohdKaus, Physico-mechanical study of CMC/BFO/PoPD nanocomposite films reinforced with cellulose nanocrystals (CNCMCC) for effective photocatalytic removal of methyl orange. J. Compos. Sci. (2021). https://doi.org/10.3390/jcs5060142

    Article  Google Scholar 

  15. N. Kannapiran, A. Muthusamy, S.S. Meena, Study of magnetic and electrical properties of poly(o-phenylenediamine)/manganese substituted ZnFe2O4 nanocomposites. J. Inorg. Organomet. Polym. Mater. 31, 3441–3459 (2021). https://doi.org/10.1007/s10904-021-02020-2

    Article  CAS  Google Scholar 

  16. C.I. Idumah, Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synth. Met. 273, 116674 (2021)

    CAS  Google Scholar 

  17. S. Wang, Y. Huang, E. Chang, C. Zhao, A. Ameli, H.E. Naguib, C.B. Park, Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks. Chem. Eng. J. 411, 128382 (2021)

    CAS  Google Scholar 

  18. O. Kanoun, A. Bouhamed, R. Ramalingame, J.R. Bautista-Quijano, D. Rajendran, A. Al-Hamry, Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors. 21, 341 (2021)

    CAS  Google Scholar 

  19. Y.T. Ravikiran, C.H.V.V. Ramana, R. Megha, R.S. Dubey, M. Prashantkumar, Synthetic Approaches of Conducting Polymer Nanocomposites (Elsevier, Amsterdam, 2022), pp.79–112

    Google Scholar 

  20. J. Guo, X. Li, Z. Chen, J. Zhu, X. Mai, R. Wei, K. Sun, H. Liu, Y. Chen, N. Naik, Z. Guo, Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 108, 64–72 (2022). https://doi.org/10.1016/j.jmst.2021.08.049

    Article  CAS  Google Scholar 

  21. S.D. GunaVathana, J. Wilson, R. Prashanthi, A.C. Peter, CuO nanoflakes anchored polythiophene nanocomposite: voltammetric detection of l-tryptophan. Inorg. Chem. Commun. 124, 108398 (2021)

    Google Scholar 

  22. F.K. Saidu, A. Joseph, E.V. Varghese, G.V. Thomas, Silver nanoparticles-embedded poly (1-naphthylamine) nanospheres for low-cost non-enzymatic electrochemical H2O2 sensor. Polym. Bull. 77, 5825–5846 (2020)

    CAS  Google Scholar 

  23. T. Hassan, A. Salam, A. Khan, S.U. Khan, H. Khanzada, M. Wasim, M.Q. Khan, I.S. Kim, Functional nanocomposites and their potential applications: a review. J. Polym. Res. 28, 1–22 (2021)

    Google Scholar 

  24. S. Srivastava, A. Bhargava, Green nanotechnology: an overview. Green Nanoparticles Future Nanobiotechnol. 28, 1–13 (2022)

    Google Scholar 

  25. Y. Saylan, H. Yavuz, C. Ülger, A. Denizli, N. Sağlam, Introduction to nanoscience, nanomaterials, nanocomposite, nanopolymer, and engineering smart materials, in Microbial Nanobionics: Volume 2, Basic Research and Applications. ed. by R. Prasad (Springer, Cham, 2019), pp.1–12

    Google Scholar 

  26. S. Palit, C.M. Hussain, Green Polymer Nanocomposites, Biocompatible Nanopolymers, and the Environmental Pollution Control: A Far-Reaching Review, in Handbook of Polymer and Ceramic Nanotechnology. ed. by C.M. Hussain, S. Thomas (Springer, Cham, 2021), pp.3–23

    Google Scholar 

  27. S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: a critical review. Nano Mater. Sci. 1, 2–30 (2019)

    Google Scholar 

  28. L. Zhang, W. Du, A. Nautiyal, Z. Liu, X. Zhang, Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci. China Mater. 61, 303–352 (2018)

    CAS  Google Scholar 

  29. A.M. Muzafarov, N.G. Vasilenko, E.A. Tatarinova, G.M. Ignat’eva, V.M. Myakushev, M.A. Obrezkova, I.B. Meshkov, N.V. Voronina, O.V. Novozhilov, Macromolecular nano-objects as a promising direction of polymer chemistry. Polym. Sci. Ser. C 53, 48 (2011)

    CAS  Google Scholar 

  30. J. Schummer, Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics 59, 425–465 (2004)

    CAS  Google Scholar 

  31. P. Kesharwani, A.K. Iyer, Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today 20, 536–547 (2015)

    CAS  Google Scholar 

  32. R. Tong, D.A. Christian, L. Tang, H. Cabral, J.R. Baker, K. Kataoka, D.E. Discher, J. Cheng, Nanopolymeric therapeutics. MRS Bull. 34, 422–431 (2009)

    CAS  Google Scholar 

  33. S. Zohoori, L. Karimi, S. Ayaziyazdi, A novel durable photoactive nylon fabric using electrospun nanofibers containing nanophotocatalysts. J. Ind. Eng. Chem. 20, 2934–2938 (2014)

    CAS  Google Scholar 

  34. B. Thierry, F.M. Winnik, Y. Merhi, M. Tabrizian, Nanocoatings onto arteries via layer-by-layer deposition: toward the in vivo repair of damaged blood vessels. J. Am. Chem. Soc. 125, 7494–7495 (2003)

    CAS  Google Scholar 

  35. M. He, C. Chang, N. Peng, L. Zhang, Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydr. Polym. 87, 2512–2518 (2012)

    CAS  Google Scholar 

  36. K. Sudhakar, N.N. Reddy, T. Jayaramudu, J. Jayaramudu, A.B. Reddy, B. Manjula, E.R. Sadiku, Aerogels and Foamed Nanostructured Polymer Blends (Elsevier, Amsterdam, 2016), pp.75–99

    Google Scholar 

  37. S.-W. Zhang, S.-X. Zhou, Y.-M. Weng, L.-M. Wu, Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization. Langmuir 21, 2124–2128 (2005)

    CAS  Google Scholar 

  38. E. Antolini, Review in applied electrochemistry. Number 54 recent developments in polymer electrolyte fuel cell electrodes. J. Appl. Electrochem. 34, 563–576 (2004)

    CAS  Google Scholar 

  39. A. Fernández, J. Medina, C. Benkel, M. Guttmann, B. Bilenberg, L.H. Thamdrup, T. Nielsen, C.M.S. Torres, N. Kehagias, Residual layer-free Reverse Nanoimprint Lithography on silicon and metal-coated substrates. Microelectron. Eng. 141, 56–61 (2015)

    Google Scholar 

  40. N. Panwar, A. Chauhan, Fabrication methods of particulate reinforced aluminium metal matrix composite-a review. Mater. Today Proc. 5, 5933–5939 (2018)

    CAS  Google Scholar 

  41. P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2, 1400010 (2015)

    Google Scholar 

  42. W. Lee, D. Kim, S. Lee, J. Park, S. Oh, G. Kim, J. Lim, J. Kim, Stimuli-responsive switchable organic–inorganic nanocomposite materials. Nano Today 23, 97–123 (2018)

    CAS  Google Scholar 

  43. T. Ahmed, A. Saleem, P. Ramyakrishna, B. Rajender, T. Gulzar, A. Khan, A.M. Asiri, Nanostructured Polymer Composites for Bio-applications (Elsevier, Amsterdam, 2019), pp.167–188

    Google Scholar 

  44. M. Joshi, A. Bhattacharyya, Nanotechnology—a new route to high-performance functional textiles. Text. Prog. 43, 155–233 (2011)

    Google Scholar 

  45. M. Rebber, C. Willa, D. Koziej, Organic–inorganic hybrids for CO2 sensing, separation and conversion. Nanoscale Horizons. 5, 431–453 (2020)

    CAS  Google Scholar 

  46. R.M. Laine, J. Choi, I. Lee, Organic–inorganic nanocomposites with completely defined interfacial interactions. Adv. Mater. 13, 800–803 (2001)

    CAS  Google Scholar 

  47. D. Sun, R. Zhang, Z. Liu, Y. Huang, Y. Wang, J. He, B. Han, G. Yang, Polypropylene/silica nanocomposites prepared by in-situ sol–gel reaction with the aid of CO2. Macromolecules 38, 5617–5624 (2005)

    CAS  Google Scholar 

  48. F. Bergaya, C. Detellier, J.-F. Lambert, G. Lagaly, Introduction to Clay–Polymer Nanocomposites (CPN) (Elsevier, Amsterdam, 2013), pp.655–677

    Google Scholar 

  49. Z. Zhang, J. Du, J. Li, X. Huang, T. Kang, C. Zhang, S. Wang, O.O. Ajao, W.-J. Wang, P. Liu, Polymer nanocomposites with aligned two-dimensional materials. Progr. Polym. Sci. 114, 101360 (2021)

    CAS  Google Scholar 

  50. J. Seaberg, H. Montazerian, M.N. Hossen, R. Bhattacharya, A. Khademhosseini, P. Mukherjee, Hybrid nanosystems for biomedical applications. ACS Nano 15, 2099–2142 (2021)

    CAS  Google Scholar 

  51. R.A. Vaia, J.F. Maguire, Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem. Mater. 19, 2736–2751 (2007)

    CAS  Google Scholar 

  52. S. Maghsoudi, B.T. Shahraki, N. Rabiee, Y. Fatahi, R. Dinarvand, M. Tavakolizadeh, S. Ahmadi, M. Rabiee, M. Bagherzadeh, A. Pourjavadi, Burgeoning polymer nano blends for improved controlled drug release: a review. Int. J. Nanomed. 15, 4363 (2020)

    CAS  Google Scholar 

  53. M.Z. Rong, M.Q. Zhang, W.H. Ruan, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater. Sci. Technol. 22, 787–796 (2006)

    CAS  Google Scholar 

  54. M. Baibarac, P. Gómez-Romero, Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J. Nanosci. Nanotechnol. 6, 289–302 (2006)

    CAS  Google Scholar 

  55. S. Jadoun, J. Yáñez, H.D. Mansilla, U. Riaz, N.P.S. Chauhan, Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review. Environ. Chem. Lett. (2022). https://doi.org/10.1007/s10311-022-01398-w

    Article  Google Scholar 

  56. M. Tomczykowa, M.E. Plonska-Brzezinska, Conducting polymers, hydrogels and their composites: preparation, properties and bioapplications. Polymers (Basel). 11, 350 (2019)

    Google Scholar 

  57. C. Zhan, G. Yu, Y. Lu, L. Wang, E. Wujcik, S. Wei, Conductive polymer nanocomposites: a critical review of modern advanced devices. J. Mater. Chem. C 5, 1569–1585 (2017)

    CAS  Google Scholar 

  58. E.N. Konyushenko, N.E. Kazantseva, J. Stejskal, M. Trchová, J. Kovářová, I. Sapurina, M.M. Tomishko, O.V. Demicheva, J. Prokeš, Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles. J. Magn. Magn. Mater. 320, 231–240 (2008)

    CAS  Google Scholar 

  59. M. Rohwerder, S. Isik-Uppenkamp, C.A. Amarnath, Application of the Kelvin Probe method for screening the interfacial reactivity of conducting polymer based coatings for corrosion protection. Electrochim. Acta. 56, 1889–1893 (2011)

    CAS  Google Scholar 

  60. N.K. Jangid, S. Jadoun, A. Yadav, M. Srivastava, N. Kaur, Polyaniline-TiO2-based photocatalysts for dyes degradation. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03318-w

    Article  Google Scholar 

  61. D. Khokhar, S. Jadoun, R. Arif, S. Jabin, D.S. Rathore, Facile synthesis of the chemically oxidative grafted copolymer of 2,6-diaminopyridine (DAP) and thiophene (Th) for optoelectronic and antioxidant studies. J. Mol. Struct. 1248, 131453 (2022)

    CAS  Google Scholar 

  62. D.W. Kim, A. Blumstein, J. Kumar, L.A. Samuelson, B. Kang, C. Sung, Ordered multilayer nanocomposites prepared by electrostatic layer-by-layer assembly between aluminosilicate nanoplatelets and substituted ionic polyacetylenes. Chem. Mater. 14, 3925–3929 (2002)

    CAS  Google Scholar 

  63. S. Jadoun, L. Biswal, U. Riaz, Tuning the optical properties of poly(o-phenylenediamine-co-pyrrole) via template mediated copolymerization. Des. Monomers Polym. 21, 75–81 (2018). https://doi.org/10.1080/15685551.2018.1459078

    Article  CAS  Google Scholar 

  64. S. Jadoun, S.M. Ashraf, U. Riaz, Insights into the spectral, thermal and morphological effects of co-oligomerization of pyrrole with luminol: a comparative experimental and computational study. Mater. Sci. Eng. B 273, 115396 (2021). https://doi.org/10.1016/j.mseb.2021.115396

    Article  CAS  Google Scholar 

  65. S. Jadoun, V. Sharma, S.M. Ashraf, U. Riaz, Sonolytic doping of poly(1-naphthylamine) with luminol: influence on spectral, morphological and fluorescent characteristics. Colloid Polym. Sci. (2017). https://doi.org/10.1007/s00396-017-4055-3

    Article  Google Scholar 

  66. S. Jadoun, A. Verma, S.M. Ashraf, U. Riaz, A short review on the synthesis, characterization, and application studies of poly(1-naphthylamine): a seldom explored polyaniline derivative. Colloid Polym. Sci. (2017). https://doi.org/10.1007/s00396-017-4129-2

    Article  Google Scholar 

  67. U. Riaz, S. Jadoun, P. Kumar, M. Arish, A. Rub, S.M. Ashraf, Influence of luminol doping of poly(o-phenylenediamine) on the spectral, morphological, and fluorescent properties: a potential fluorescent marker for early detection and diagnosis of Leishmania donovani. ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b10325

    Article  Google Scholar 

  68. S. Jadoun, S.M. Ashraf, U. Riaz, Tuning the spectral, thermal and fluorescent properties of conjugated polymers: via random copolymerization of hole transporting monomers. RSC Adv. 7, 32757–32768 (2017). https://doi.org/10.1039/c7ra04662f

    Article  CAS  Google Scholar 

  69. U. Riaz, S.M. Ashraf, S. Jadoun, V. Budhiraja, P. Kumar, Spectroscopic and biophysical interaction studies of water-soluble dye modified poly (o-phenylenediamine) for its potential application in BSA detection and bioimaging. Sci. Rep. 9, 8544 (2019)

    Google Scholar 

  70. U. Riaz, S. Jadoun, P. Kumar, R. Kumar, N. Yadav, Microwave-assisted facile synthesis of poly (luminol-co-phenylenediamine) copolymers and their potential application in biomedical imaging. RSC Adv. 8, 37165–37175 (2018)

    CAS  Google Scholar 

  71. D. Khokhar, S. Jadoun, R. Arif, S. Jabin, V. Budhiraja, Copolymerization of o-phenylenediamine and 3-Amino-5-methylthio-1H-1,2,4-triazole for tuned optoelectronic properties and its antioxidant studies. J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.129738

    Article  Google Scholar 

  72. D. Khokhar, S. Jadoun, R. Arif, S. Jabin, Tuning the spectral, thermal and morphological properties of Poly(o-phenylenediamine-co-vaniline). Mater. Res. Innov. (2021). https://doi.org/10.1080/14328917.2020.1870330

    Article  Google Scholar 

  73. S. Jadoun, S.M. Ashraf, U. Riaz, Microwave-assisted synthesis of copolymers of luminol with anisidine: effect on spectral, thermal and fluorescence characteristics. Polym. Adv. Technol. 29, 1007–1017 (2018)

    CAS  Google Scholar 

  74. U. Riaz, S.M. Ashraf, S. Aleem, V. Budhiraja, S. Jadoun, Microwave-assisted green synthesis of some nanoconjugated copolymers: characterisation and fluorescence quenching studies with bovine serum albumin. New J. Chem. 40, 4643–4653 (2016). https://doi.org/10.1039/C5NJ02513C

    Article  CAS  Google Scholar 

  75. U. Riaz, S.M. Ashraf, S. Kumar Saroj, M. Zeeshan, S. Jadoun, Microwave-assisted solid state intercalation of Rhodamine B and polycarbazole in bentonite clay interlayer space: Structural characterization and photophysics of double intercalation. RSC Adv. (2016). https://doi.org/10.1039/c5ra27387k

    Article  Google Scholar 

  76. S. Jadoun, U. Riaz, A review on the chemical and electrochemical copolymerization of conducting monomers: recent advancements and future prospects. Polym. Technol. Mater. 103, 1–21 (2019)

    Google Scholar 

  77. U. Riaz, S.M. Ashraf, T. Fatima, S. Jadoun, Tuning the spectral, morphological and photophysical properties of sonochemically synthesized poly ( carbazole ) using acid Orange, fluorescein and rhodamine 6G, SAA. Spectrochimica Acta Part A 173, 986–993 (2017). https://doi.org/10.1016/j.saa.2016.11.003

    Article  CAS  Google Scholar 

  78. S. Jadoun, A. Verma, U. Riaz, Luminol modified polycarbazole and poly (o-anisidine): theoretical insights compared with experimental data. Spectrochim. Acta Part A 204, 65–74 (2018)

    Google Scholar 

  79. G. Kaur, A. Kaur, H. Kaur, Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors. Polym. Technol. Mater. 60, 502–519 (2021). https://doi.org/10.1080/25740881.2020.1844233

    Article  CAS  Google Scholar 

  80. X.S. Du, M. Xiao, Y.Z. Meng, Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur. Polym. J. 40, 1489–1493 (2004). https://doi.org/10.1016/j.eurpolymj.2004.02.009

    Article  CAS  Google Scholar 

  81. X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 92, 13127 (2008)

    Google Scholar 

  82. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci. Mater. Int. 22, 273–280 (2012). https://doi.org/10.1016/j.pnsc.2012.07.002

    Article  Google Scholar 

  83. B.S. Rathore, N.P.S. Chauhan, S. Jadoun, S.C. Ameta, R. Ameta, Synthesis and characterization of chitosan-polyaniline-nickel(II) oxide nanocomposite. J. Mol. Struct. 1242, 130750 (2021)

    CAS  Google Scholar 

  84. S.W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles. Curr. Appl. Phys. 8, 391–394 (2008). https://doi.org/10.1016/j.cap.2007.10.022

    Article  Google Scholar 

  85. U. Mehmood, A. Al-Ahmed, I.A. Hussein, Review on recent advances in polythiophene based photovoltaic devices. Renew. Sustain. Energy Rev. 57, 550–561 (2016)

    CAS  Google Scholar 

  86. M.O. Ansari, M.M. Khan, S.A. Ansari, M.H. Cho, Polythiophene nanocomposites for photodegradation applications: past, present and future. J. Saudi Chem. Soc. 19, 494–504 (2015). https://doi.org/10.1016/j.jscs.2015.06.004

    Article  Google Scholar 

  87. Q.-T. Vu, M. Pavlik, N. Hebestreit, U. Rammelt, W. Plieth, J. Pfleger, Nanocomposites based on titanium dioxide and polythiophene: structure and properties. React. Funct. Polym. 65, 69–77 (2005). https://doi.org/10.1016/j.reactfunctpolym.2004.11.011

    Article  CAS  Google Scholar 

  88. Q. Lu, Y. Zhou, Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties. J. Power Sources. 196, 4088–4094 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.059

    Article  CAS  Google Scholar 

  89. Z. Zhang, F. Wang, F. Chen, G. Shi, Preparation of polythiophene coated gold nanoparticles. Mater. Lett. 60, 1039–1042 (2006). https://doi.org/10.1016/j.matlet.2005.10.071

    Article  CAS  Google Scholar 

  90. N. Ballav, M. Biswas, Preparation and evaluation of a nanocomposite of polythiophene with Al2O3. Polym. Int. 52, 179–184 (2003). https://doi.org/10.1002/pi.1001

    Article  CAS  Google Scholar 

  91. K.H. An, S.Y. Jeong, H.R. Hwang, Y.H. Lee, Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv. Mater. 16, 1005–1009 (2004). https://doi.org/10.1002/adma.200306176

    Article  CAS  Google Scholar 

  92. R.K. Sharma, A.C. Rastogi, S.B. Desu, Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim. Acta. 53, 7690–7695 (2008). https://doi.org/10.1016/j.electacta.2008.04.028

    Article  CAS  Google Scholar 

  93. K. Suri, S. Annapoorni, A.K. Sarkar, R.P. Tandon, Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sens. Actuators B 81, 277–282 (2002). https://doi.org/10.1016/S0925-4005(01)00966-2

    Article  CAS  Google Scholar 

  94. S. Jing, S. Xing, L. Yu, C. Zhao, Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid. Mater. Lett. 61, 4528–4530 (2007). https://doi.org/10.1016/j.matlet.2007.02.045

    Article  CAS  Google Scholar 

  95. H. Wang, N. Ma, Z. Yan, L. Deng, J. He, Y. Hou, Y. Jiang, G. Yu, Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties. Nanoscale 7, 7189–7196 (2015). https://doi.org/10.1039/C4NR06978A

    Article  CAS  Google Scholar 

  96. B.-C. Ku, D.K. Kim, J.S. Lee, A. Blumstein, J. Kumar, L.A. Samuelson, Synthesis and properties of water soluble single-walled carbon nanotube graft ionic polyacetylene nanocomposites. Polym. Compos. 30, 1817–1824 (2009). https://doi.org/10.1002/pc.20754

    Article  CAS  Google Scholar 

  97. M. Hu, L. Song, C. Jiang, Multi-walled carbon nanotubes-supported Fe(NAPH)3 nanoparticles to prepare polyacetylene/multi-walled carbon nanotubes nanocomposites. J. Mater. Sci. Mater. Electron. 24, 2357–2361 (2013). https://doi.org/10.1007/s10854-013-1101-x

    Article  CAS  Google Scholar 

  98. X. Bu, Y. Zhou, T. Zhang, M. He, Preparation of optically active substituted polyacetylene@CdSe quantum dots composites and their application for low infrared emissivity. J. Mater. Sci. 49, 7133–7142 (2014). https://doi.org/10.1007/s10853-014-8421-y

    Article  CAS  Google Scholar 

  99. A. Ganash, Anticorrosive properties of poly (o-phenylenediamine)/ZnO nanocomposites coated stainless steel. J. Nanomater. 2014, 40 (2014)

    Google Scholar 

  100. P. Paulraj, A. Manikandan, E. Manikandan, K. Pandian, M.K. Moodley, K. Roro, K. Murugan, Solid-state synthesis of POPD@ AgNPs nanocomposites for electrochemical sensors. J. Nanosci. Nanotechnol. 18, 3991–3999 (2018)

    CAS  Google Scholar 

  101. N. Kannapiran, A. Muthusamy, P. Chitra, S. Anand, R. Jayaprakash, Poly(o-phenylenediamine)/NiCoFe2O4 nanocomposites: synthesis, characterization, magnetic and dielectric properties. J. Magn. Magn. Mater. 423, 208–216 (2017). https://doi.org/10.1016/j.jmmm.2016.09.095

    Article  CAS  Google Scholar 

  102. S. Jadoun, U. Riaz, J. Yáñez, N. Pal Singh Chauhan, Synthesis, characterization and potential applications of poly(o-phenylenediamine) based copolymers and nanocomposites: a comprehensive review. Eur. Polym. J. 156, 110600 (2021). https://doi.org/10.1016/j.eurpolymj.2021.110600

    Article  CAS  Google Scholar 

  103. K. Hoshino, N. Yazawa, Y. Tanaka, T. Chiba, T. Izumizawa, M. Kubo, Polycarbazole nanocomposites with conducting metal oxides for transparent electrode applications. ACS Appl. Mater. Interfaces 2, 413–424 (2010). https://doi.org/10.1021/am900684e

    Article  CAS  Google Scholar 

  104. R.K. Pandey, A.K. Singh, R. Prakash, Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode. AIP Adv. 3, 122120 (2013)

    Google Scholar 

  105. B. Gupta, L. Joshi, R. Prakash, Novel synthesis of polycarbazole-gold nanocomposite. Macromol. Chem. Phys. 212, 1692–1699 (2011). https://doi.org/10.1002/macp.201100262

    Article  CAS  Google Scholar 

  106. L.Z. Pei, Y. Ma, F.L. Qiu, F.F. Lin, C.G. Fan, X.Z. Ling, In-situ synthesis of polynaphthylamine/graphene composites for the electrochemical sensing of benzoic acid. Mater. Res. Express. 6, 15053 (2018)

    Google Scholar 

  107. R. Hussain, M.Q. Khan, A.A. Khan, Tetrahydrofuran vapour sensing by electrically conductive silver nanoparticle doped poly-1-napthylamine-titanium(IV)sulphosalicylophosphate ion exchange nanocomposite. J. Ind. Eng. Chem. 70, 186–195 (2019). https://doi.org/10.1016/j.jiec.2018.10.015

    Article  CAS  Google Scholar 

  108. J. Jiang, L.-H. Ai, A.-H. Liu, A novel poly(o-anisidine)/CoFe2O4 multifunctional nanocomposite: preparation, characterization and properties. Synth. Met. 160, 333–336 (2010). https://doi.org/10.1016/j.synthmet.2009.10.032

    Article  CAS  Google Scholar 

  109. P.A. Basnayaka, M.K. Ram, L. Stefanakos, A. Kumar, High performance graphene-poly (o-anisidine) nanocomposite for supercapacitor applications. Mater. Chem. Phys. 141, 263–271 (2013). https://doi.org/10.1016/j.matchemphys.2013.05.009

    Article  CAS  Google Scholar 

  110. D. Patil, P. Patil, Y.-K. Seo, Y.K. Hwang, Poly(o-anisidine)–tin oxide nanocomposite: synthesis, characterization and application to humidity sensing. Sens. Actuators B 148, 41–48 (2010). https://doi.org/10.1016/j.snb.2010.04.046

    Article  CAS  Google Scholar 

  111. G.-F. Wang, X.-M. Tao, R.-X. Wang, Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nanocomposites. Compos. Sci. Technol. 68, 2837–2841 (2008). https://doi.org/10.1016/j.compscitech.2007.11.004

    Article  CAS  Google Scholar 

  112. C. Peng, S. Zhang, D. Jewell, G.Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 18, 777–788 (2008)

    CAS  Google Scholar 

  113. S.R. Sivakkumar, D.-W. Kim, Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J. Electrochem. Soc. 154, A134–A139 (2007)

    CAS  Google Scholar 

  114. N.P.S. Chauhan, S. Jadoun, B.S. Rathore, M. Barani, P. Zarrintaj, Redox polymers for capacitive energy storage applications. J. Energy Storage. 43, 103218 (2021). https://doi.org/10.1016/j.est.2021.103218

    Article  Google Scholar 

  115. S. Il Cho, S.B. Lee, Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc. Chem. Res. 41, 699–707 (2008)

    Google Scholar 

  116. S. Shrivastava, N. Jadon, R. Jain, Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review, TrAC. Trends Anal. Chem. 82, 55–67 (2016)

    CAS  Google Scholar 

  117. M. Gao, L. Dai, G.G. Wallace, Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis 15, 1089–1094 (2003)

    CAS  Google Scholar 

  118. A.K. Cuentas-Gallegos, M. Lira-Cantú, N. Casañ-Pastor, P. Gómez-Romero, Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater. 15, 1125–1133 (2005)

    CAS  Google Scholar 

  119. D. Khokhar, S. Jadoun, R. Arif, S. Jabin, Functionalization of conducting polymers and their applications in optoelectronics. Polym. Technol. Mater. (2020). https://doi.org/10.1080/25740881.2020.1819312

    Article  Google Scholar 

  120. M. Aamir, W. Aleem, M.N. Akhtar, A.A. Din, G. Yasmeen, M.N. Ashiq, Synthesis and characterizations of Co–Zr doped Ni ferrite/PANI nanocomposites for photocatalytic methyl orange dye degradation. Physica B 624, 413392 (2022). https://doi.org/10.1016/j.physb.2021.413392

    Article  CAS  Google Scholar 

  121. X. Li, Y. Li, S. Xie, Y. Zhou, J. Rong, L. Dong, Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem. Eng. J. 427, 131799 (2022). https://doi.org/10.1016/j.cej.2021.131799

    Article  CAS  Google Scholar 

  122. X. Xing, L. Du, D. Feng, C. Wang, Y. Tian, Z. Li, H. Liu, D. Yang, Twistable and tailorable V2O5/PANI/GO nanocomposites textile for wearable ammonia sensing. Sens. Actuators B 351, 130944 (2022). https://doi.org/10.1016/j.snb.2021.130944

    Article  CAS  Google Scholar 

  123. J. Ma, H. Deng, Z. Zhang, L. Zhang, Z. Qin, Y. Zhang, L. Gao, T. Jiao, Facile synthesis of Ag3PO4/PPy/PANI ternary composites for efficient catalytic reduction of 4-nitrophenol and 2-nitroaniline. Colloids Surf. A 632, 127774 (2022). https://doi.org/10.1016/j.colsurfa.2021.127774

    Article  CAS  Google Scholar 

  124. G.K. Kulkarni, S.A. Jadhav, K.T. Patil, P.S. Patil, V.R. Puri, α-MnO2 nanorods-polyaniline (PANI) nanocomposites synthesized by polymer coating and grafting approaches for screening EMI pollution. Ceram. Int. 47, 15044–15051 (2021). https://doi.org/10.1016/j.ceramint.2021.02.061

    Article  CAS  Google Scholar 

  125. M. Zhang, H. Ling, S. Ding, Y. Xie, T. Cheng, L. Zhao, T. Wang, H. Bian, H. Lin, Z. Li, A. Meng, Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon N. Y. 174, 248–259 (2021). https://doi.org/10.1016/j.carbon.2020.12.005

    Article  CAS  Google Scholar 

  126. J. Ma, H. Ren, Z. Liu, J. Zhou, Y. Wang, B. Hu, Y. Liu, L.B. Kong, T. Zhang, Embedded MoS2-PANI nanocomposites with advanced microwave absorption performance. Compos. Sci. Technol. 198, 108239 (2020). https://doi.org/10.1016/j.compscitech.2020.108239

    Article  CAS  Google Scholar 

  127. Y. Zhang, D. Jiang, Y. Wang, T.C. Zhang, G. Xiang, Y.-X. Zhang, S. Yuan, Core–shell structured magnetic γ-Fe2O3@pani nanocomposites for enhanced As(V) adsorption. Ind. Eng. Chem. Res. 59, 7554–7563 (2020). https://doi.org/10.1021/acs.iecr.9b07080

    Article  CAS  Google Scholar 

  128. P. Paulraj, A. Umar, K. Rajendran, A. Manikandan, R. Kumar, E. Manikandan, K. Pandian, M.H. Mahnashi, M.A. Alsaiari, A.A. Ibrahim, N. Bouropoulos, S. Baskoutas, Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine. Electrochim. Acta. 363, 137158 (2020). https://doi.org/10.1016/j.electacta.2020.137158

    Article  CAS  Google Scholar 

  129. S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, S. Vadivel, Fabrication of TiO2/CoMoO4/PANI nanocomposites with enhanced photocatalytic performances for removal of organic and inorganic pollutants under visible light. Mater. Chem. Phys. 224, 10–21 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.076

    Article  CAS  Google Scholar 

  130. A. Sáaedi, P. Shabani, R. Yousefi, High performance of methanol gas sensing of ZnO/PAni nanocomposites synthesized under different magnetic field. J. Alloys Compd. 802, 335–344 (2019). https://doi.org/10.1016/j.jallcom.2019.06.088

    Article  CAS  Google Scholar 

  131. S. ul Haque, N. Duteanu, A. Nasar, A. Inamuddin, Polythiophene-titanium oxide (PTH-TiO2) nanocomposite: as an electron transfer enhancer for biofuel cell anode construction. J. Power Sources. 520, 230867 (2022). https://doi.org/10.1016/j.jpowsour.2021.230867

    Article  CAS  Google Scholar 

  132. M. Karegar, M.M. Khodaei, The modified polythiophene-Cu NPs composites for Pb(II) ions removal from aqueous solution. J. Appl. Polym. Sci. 139, 51489 (2022). https://doi.org/10.1002/app.51489

    Article  CAS  Google Scholar 

  133. H. Noreen, J. Iqbal, W. Hassan, G. Rahman, M. Yaseen, A.U. Rahman, Synthesis of graphene nanoplatelets/polythiophene nanocomposites With enhanced photocatalytic degradation of bromophenol blue and antibacterial properties. Mater. Res. Bull. 142, 111435 (2021). https://doi.org/10.1016/j.materresbull.2021.111435

    Article  CAS  Google Scholar 

  134. A. Husain, S. Ahmad, F. Mohammad, Polythiophene/graphene/zinc tungstate nanocomposite: synthesis, characterization, DC electrical conductivity and cigarette smoke sensing application. Polym. Polym. Compos. 29, 605–616 (2020). https://doi.org/10.1177/0967391120929079

    Article  CAS  Google Scholar 

  135. R. Singh, A.K. Shrivastava, A.K. Bajpai, CdSe reinforced polythiophene nanocomposites as excellent materials for diode applications. Express Polym. Lett. 15, 45–57 (2021)

    CAS  Google Scholar 

  136. A. Husain, S. Ahmad, F. Mohammad, Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite. Mater. Chem. Phys. 239, 122324 (2020). https://doi.org/10.1016/j.matchemphys.2019.122324

    Article  CAS  Google Scholar 

  137. Y. Ma, Y. Xu, X. Ji, M. Xie, D. Jiang, J. Yan, Z. Song, H. Xu, H. Li, Construction of polythiophene/Bi4O5I2 nanocomposites to promote photocatalytic degradation of bisphenol a. J. Alloys Compd. 823, 153773 (2020). https://doi.org/10.1016/j.jallcom.2020.153773

    Article  CAS  Google Scholar 

  138. M.R. Mahmoudian, W.J. Basirun, Y. Alias, P. MengWoi, Investigating the effectiveness of g-C3N4 on Pt /g-C3N4/polythiophene nanocomposites performance as an electrochemical sensor for Hg2+ detection. J. Environ. Chem. Eng. 8, 104204 (2020). https://doi.org/10.1016/j.jece.2020.104204

    Article  CAS  Google Scholar 

  139. A. Husain, S. Ahmad, F. Mohammad, Thermally stable and highly sensitive ethene gas sensor based on polythiophene/zirconium oxide nanocomposites. Mater. Today Commun. 20, 100574 (2019). https://doi.org/10.1016/j.mtcomm.2019.100574

    Article  CAS  Google Scholar 

  140. H. Vijeth, S.P. Ashokkumar, L. Yesappa, M. Vandana, H. Devendrappa, Photocatalytic degradation of methylene blue and Rhodamine B using polythiophene nanocomposites under visible and UV light. AIP Conf. Proc. 2115, 30536 (2019). https://doi.org/10.1063/1.5113375

    Article  CAS  Google Scholar 

  141. Y. Fu, H. Liao, B. Wang, Q. Wu, T. Liu, Constructing yolk-shell Co@void@PPy nanocomposites with tunable dielectric properties toward efficient microwave absorption. J. Alloys Compd. 890, 161715 (2022). https://doi.org/10.1016/j.jallcom.2021.161715

    Article  CAS  Google Scholar 

  142. G. Sarojini, S. Venkateshbabu, M. Rajasimman, Facile synthesis and characterization of polypyrrole - iron oxide – seaweed (PPy-Fe3O4-SW) nanocomposite and its exploration for adsorptive removal of Pb(II) from heavy metal bearing water. Chemosphere 278, 130400 (2021). https://doi.org/10.1016/j.chemosphere.2021.130400

    Article  CAS  Google Scholar 

  143. M. Shoeb, M. Mobin, S. Ahmad, A.H. Naqvi, Facile synthesis of polypyrrole coated graphene Gr/Ag–Ag2O/PPy nanocomposites for a rapid and selective response towards ammonia sensing at room temperature. J. Sci. Adv. Mater. Devices. 6, 223–233 (2021). https://doi.org/10.1016/j.jsamd.2021.02.003

    Article  CAS  Google Scholar 

  144. E.S. Reis, F.D.S. Gorza, G. Pedro, B.G. Maciel, R.J. da Silva, G.P. Ratkovski, C.P. de Melo, (Maghemite/chitosan/polypyrrole) nanocomposites for the efficient removal of Cr(VI) from aqueous media. J. Environ. Chem. Eng. 9, 104893 (2021). https://doi.org/10.1016/j.jece.2020.104893

    Article  CAS  Google Scholar 

  145. K. Zhou, D. Shen, X. Li, Y. Chen, L. Hou, Y. Zhang, J. Sha, Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta 209, 120507 (2020). https://doi.org/10.1016/j.talanta.2019.120507

    Article  CAS  Google Scholar 

  146. N. Ashraf, M. Aadil, S. Zulfiqar, H. Sabeeh, M.A. Khan, I. Shakir, P.O. Agboola, M.F. Warsi, Wafer-like CoS architectures and their nanocomposites with polypyrrole for electrochemical energy storage applications. ChemistrySelect 5, 8129–8136 (2020)

    CAS  Google Scholar 

  147. M. Maruthapandi, A.P. Nagvenkar, I. Perelshtein, A. Gedanken, Carbon-dot initiated synthesis of polypyrrole and polypyrrole@CuO micro/nanoparticles with enhanced antibacterial activity. ACS Appl. Polym. Mater. 1, 1181–1186 (2019). https://doi.org/10.1021/acsapm.9b00194

    Article  CAS  Google Scholar 

  148. M. Zhang, L. Chang, Y. Zhao, Z. Yu, Fabrication of zinc oxide/polypyrrole nanocomposites for brilliant green removal from aqueous phase. Arab. J. Sci. Eng. 44, 111–121 (2019)

    CAS  Google Scholar 

  149. K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J. Therm. Anal. Calorim. 135, 2089–2100 (2019). https://doi.org/10.1007/s10973-018-7347-z

    Article  CAS  Google Scholar 

  150. D. Khokhar, S. Jadoun, R. Arif, S. Jabin, V. Budhiraja, Copolymerization of o-phenylenediamine and 3-Amino-5-methylthio-1H-1,2,4-triazole for tuned optoelectronic properties and its antioxidant studies. J. Mol. Struct. 1228, 129738 (2021). https://doi.org/10.1016/j.molstruc.2020.129738

    Article  CAS  Google Scholar 

  151. Y. Meng, L. Xiao, A. Muslim, M. Hojiahmat, Improving the adsorption of poly(o-phenylenediamine) to heavy metal ions in aqueous solution through its composite with carbon dots. J. Polym. Res. 28, 404 (2021). https://doi.org/10.1007/s10965-021-02739-z

    Article  CAS  Google Scholar 

  152. I.F. Abo-Elmagd, A.M. Mahmoud, M.A. Al-Ghobashy, M. Nebsen, N.S. El Sayed, S. Nofal, S.H. Soror, R. Todd, S.A. Elgebaly, Impedimetric sensors for cyclocreatine phosphate determination in plasma based on electropolymerized poly(o-phenylenediamine) molecularly imprinted polymers. ACS Omega 6, 31282–31291 (2021). https://doi.org/10.1021/acsomega.1c05098

    Article  CAS  Google Scholar 

  153. L.A. Hernández, F. Martín, E. Berrios, G. Riveros, D.M. González, E. González, S. Lizama, F. Hernández, Novel electrosynthesis of CdS/FeS nanocomposite-modified poly(o-phenylenediamine) with views to their use as a biosensor for Escherichia coli. Arab. J. Chem. 13, 8758–8767 (2020). https://doi.org/10.1016/j.arabjc.2020.10.006

    Article  CAS  Google Scholar 

  154. N. Kannapiran, A. Muthusamy, B. Renganathan, A.R. Ganesan, S.S. Meena, Magnetic, electrical and gas sensing properties of poly(o-phenylenediamine)/MnCoFe2O4 nanocomposites. Appl. Phys. A 126, 959 (2020). https://doi.org/10.1007/s00339-020-04138-5

    Article  CAS  Google Scholar 

  155. A.H. Majeed, D.H. Hussain, E.T.B. Al-Tikrity, M.A. Alheety, Poly(o-phenylenediamine-GO-TiO2) nanocomposite: modulation, characterization and thermodynamic calculations on its H2 storage capacity. Chem. Data Collect. 28, 100450 (2020). https://doi.org/10.1016/j.cdc.2020.100450

    Article  CAS  Google Scholar 

  156. V. Sivakumar, R. Suresh, K. Giribabu, V. Narayanan, Characterization and visible light driven photocatalytic activity of (M = Bi, La) MVO4@poly(o-phenylenediamine) nanocomposite. Mater. Sci. Eng. B 240, 41–48 (2019). https://doi.org/10.1016/j.mseb.2019.01.011

    Article  CAS  Google Scholar 

  157. T. Jeyapragasam, R. Raju, S.-M. Chen, R. Saraswathi, A.A. Hatamleh, T.-W. Chen, S.P. Rwer, Poly(o-phenylenediamine)—Multiwalled carbon nanotube nanocomposite based electrochemical sensing platform for paraquat detection. Int. J. Electrochem. Sci. 14, 8326–8339 (2019)

    CAS  Google Scholar 

  158. R.H. AL-Ammari, A.A. Ganash, M.A. Salam, Electrochemical molecularly imprinted polymer based on zinc oxide/graphene/poly(o-phenylenediamine) for 4-chlorophenol detection. Synth. Met. (2019). https://doi.org/10.1016/j.synthmet.2019.06.015

    Article  Google Scholar 

  159. M. Cui, S. Ren, J. Pu, Y. Wang, H. Zhao, L. Wang, Poly(o-phenylenediamine) modified graphene toward the reinforcement in corrosion protection of epoxy coatings. Corros. Sci. 159, 108131 (2019). https://doi.org/10.1016/j.corsci.2019.108131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful for the support of the National Research and Development Agency of Chile (ANID) and the projects, FONDECYT Postdoctoral 3200850, FONDECYT 1191572, PSEQ210016 and ANID/FONDAP/15110019. The authors are also thankful to Elsevier, Springer, American Chemical Society, Taylor & Francis, and MDPI for copyright permission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sapana Jadoun or Abbas Rahdar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadoun, S., Chauhan, N.P.S., Chinnam, S. et al. A Short Review on Conducting Polymer Nanocomposites. Biomedical Materials & Devices 1, 351–365 (2023). https://doi.org/10.1007/s44174-022-00009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00009-0

Keywords

Navigation