Skip to main content
Log in

Imaging Analysis Based on Electrogenerated Chemiluminescence

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Electrochemiluminescence (ECL), also called electrogenerated chemiluminescence, is luminescence that is produced by chemical reactions triggered by electrochemical method. ECL imaging is a novel imaging technique, which can simultaneously provide two kinds of signals of both electrochemistry and optical image. Over the past two decades, ECL imaging has been not only a powerful tool for investigating the fundamental scientific questions such as ECL mechanisms and reaction kinetics, but also a versatile analytical technique for detection of a wide range of analytes including small molecules, DNA, proteins, and cells. In the first part of this review, we briefly describe the reaction mechanisms of ECL generation. Then the review focuses on the research progress on the ECL imaging approach. It is basically introduced from the following five aspects: (i) visualization of electroactive sites on surfaces, (ii) imaging analysis at the single-bead and single-cell levels, (iii) array bioanalysis, (iv) multi-color ECL imaging, and (v) paper chip based on ECL imaging. Finally, some perspectives and future directions in this active research area are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104:3003–36.

    Article  CAS  Google Scholar 

  2. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53.

    Article  CAS  Google Scholar 

  3. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39:3275–304.

    Article  CAS  Google Scholar 

  4. Hesari M, Ding Z. Review-electrogenerated chemiluminescence: light years ahead. J Electrochem Soc. 2016;163:3116–31.

    Article  CAS  Google Scholar 

  5. Dufford RT, Nightingale D, Gaddum LW. Luminescence of Grignard compounds in electric and magnetic fields, and related electrical phenomena. J Am Chem Soc. 1927;49:1858–64.

    Article  CAS  Google Scholar 

  6. Harvey N. Luminescence during electrolysis. J Phys Chem. 1928;33:1456–9.

    Article  Google Scholar 

  7. Marquette CA, Blum LJ. Electro-chemiluminescent biosensing. Anal Bioanal Chem. 2008;390:155–68.

    Article  CAS  Google Scholar 

  8. Hercules DM. Chemiluminescence resulting from electrochemically generated species. Science. 1964;145:808–9.

    Article  CAS  Google Scholar 

  9. Visco RE, Chandross EA. Electroluminescence in solutions of aromatic hydrocarbons. J Am Chem Soc. 1964;86:5350–1.

    Article  CAS  Google Scholar 

  10. Santhana KS, Bard AJ. Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. J Am Chem Soc. 1965;87:139–40.

    Article  Google Scholar 

  11. Chandros EA, Longwort JW, Visco RE. Excimer formation and emission via annihilation of electrogenerated aromatic hydrocarbon and radical cations and anions. J Am Chem Soc. 1965;87:3259–60.

    Article  Google Scholar 

  12. Littig JS, Nieman TA. Quantitation of acridinium esters using electrogenerated chemiluminescence and flow injection. Anal Chem. 1992;64:1140–4.

    Article  CAS  Google Scholar 

  13. Fan FRF, Mau A, Bard AJ. Electrogenerated chemiluminescence, a chemiluminescent polymer based on poly(vinyl-9,10-diphenylanthracene). Chem Phys Lett. 1985;116:400–4.

    Article  CAS  Google Scholar 

  14. Prieto I, Teetsov J, Fox MA, Bout DAV, Bard AJ. A study of excimer emission in solutions of poly(9,9-dioctylfluorene) using electrogenerated chemiluminescence. J Phys Chem A. 2001;105:520–3.

    Article  CAS  Google Scholar 

  15. Richter MM, Fan FRF, Klavetter F, Heeger AJ, Bard AJ. Electrochemistry and electrogenerated chemiluminescence of films of the conjugated polymer 4-methoxy-(2-ethylhexoxyl)-2,5-polyphenylenevinylene. Chem Phys Lett. 1994;226:115–20.

    Article  CAS  Google Scholar 

  16. Sartin MM, Boydston AJ, Pagenkopf BL, Bard AJ. Electrochemistry, spectroscopy, and electrogenerated chemiluminescence of silole-based chromophores. J Am Chem Soc. 2006;128:10163–70.

    Article  CAS  Google Scholar 

  17. Nepomnyashchii AB, Kolesov G, Parkinson BA. Electrogenerated chemiluminescence of BODIPY, Ru(bpy) 2+3 , and 9,10-diphenylanthracene using interdigitated array electrodes. ACS Appl Mater Inteface. 2013;5:5931–6.

    Article  CAS  Google Scholar 

  18. Nepomnyashchii AB, Cho S, Rossky PJ, Bard AJ. Dependence of electrochemical and electrogenerated chemiluminescence properties on the structure of BODIPY dyes. Unusually large separation between sequential electron transfers. J Am Chem Soc. 2010;132:17550–9.

    Article  CAS  Google Scholar 

  19. Nepomnyashchii AB, Broering M, Ahrens J, Bard AJ. Synthesis, photophysical, electrochemical, and electrogenerated chemiluminescence studies. Multiple sequential electron transfers in BODIPY monomers, dimers, trimers, and polymer. J Am Chem Soc. 2011;133:8633–45.

    Article  CAS  Google Scholar 

  20. Nepomnyashchii AB, Broering M, Ahrens J, Bard AJ. Chemical and electrochemical dimerization of BODIPY compounds: electrogenerated chemiluminescent detection of dimer formation. J Am Chem Soc. 2011;133:19498–504.

    Article  CAS  Google Scholar 

  21. Hesari M, Lu J, Wang S, Ding Z. Efficient electrochemiluminescence of a boron-dipyrromethene (BODIPY) dye. Chem Commun. 2015;51:1081–4.

    Article  CAS  Google Scholar 

  22. Fahnrich KA, Pravda M, Guilbault GG. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta. 2001;54:531–59.

    Article  CAS  Google Scholar 

  23. Bruce D, Richter MM. Green electrochemiluminescence from ortho-metalated tris(2-phenylpyridine)iridium(III). Anal Chem. 2002;74:1340–2.

    Article  CAS  Google Scholar 

  24. Kim JI, Shin I-S, Kim H, Lee J-K. Efficient electrogenerated chemiluminescence from cyclometalated iridium(III) complexes. J Am Chem Soc. 2005;127:1614–5.

    Article  CAS  Google Scholar 

  25. Barbante GJ, Doeven EH, Kerr E, Connell TU, Donnelly PS, White JM, et al. Understanding electrogenerated chemiluminescence efficiency in blue-shifted iridium(III)-complexes: an experimental and theoretical study. Chem Eur J. 2014;20:3322–32.

    Article  CAS  Google Scholar 

  26. Kerr E, Doeven EH, Barbante GJ, Connell TU, Donnelly PS, Wilson DJD, et al. Blue electrogenerated chemiluminescence from water–soluble iridium complexes containing sulfonated phenylpyridine or tetraethylene glycol derivatized triazolylpyridine ligands. Chem Eur J. 2015;21:14987–95.

    Article  CAS  Google Scholar 

  27. Li L, Chen Y, Zhu J-J. Recent advances in electrochemiluminescence analysis. Anal Chem. 2017;89:358–71.

    Article  CAS  Google Scholar 

  28. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science. 2002;296:1293–7.

    Article  CAS  Google Scholar 

  29. Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–42.

    Article  CAS  Google Scholar 

  30. Mauzeroll J, Danis AS, Odette WL, Perry SC, Canesi S, Sleiman H. Cuvette-based electrogenerated chemiluminescence detection system for the assessment of polymerizable ruthenium luminophores. ChemElectroChem. 2017;. doi:10.1002/celc.201600879.

    Google Scholar 

  31. Swanick KN, Ladouceur S, Zysman-Colman E, Ding Z. Self-enhanced electrochemiluminescence of an iridium(III) complex: mechanistic insight. Angew Chem Int Ed. 2012;51:11079–82.

    Article  CAS  Google Scholar 

  32. Gerardi RD, Barnett NW, Lewis SW. Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent. Anal Chim Acta. 1999;378:1–41.

    Article  CAS  Google Scholar 

  33. Knight AW. A review of recent trends in analytical applications of electrogenerated chemiluminescence. TrAC Trends Anal Chem. 1999;18:47–62.

    Article  CAS  Google Scholar 

  34. Yin XB, Dong SJ, Wang E. Analytical applications of the electrochemiluminescence of tris (2.2′-bipyridyl) ruthenium and its derivatives. TrAC Trends Anal Chem. 2004;23:432–41.

    Article  CAS  Google Scholar 

  35. Gorman BA, Francis PS, Barnett NW. Tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence. Analyst. 2006;131:616–39.

    Article  CAS  Google Scholar 

  36. Wei H, Wang E. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium. TrAC Trends Anal Chem. 2008;27:447–59.

    Article  CAS  Google Scholar 

  37. Forster RJ, Bertoncello P, Keyes TE. Electrogenerated chemiluminescence. Ann Rev Anal Chem. 2009;2:359–85.

    Article  CAS  Google Scholar 

  38. Chen X, Su B, Song X, Chen Q, Chen X, Wang X. Recent advances in electrochemiluminescent enzyme biosensors. TrAC Trends Anal Chem. 2011;30:665–76.

    Article  CAS  Google Scholar 

  39. Huang H, Li J, Zhu J. Electrochemiluminescence based on quantum dots and their analytical application. Anal Methods. 2011;3:33–42.

    Article  CAS  Google Scholar 

  40. Deng S, Ju H. Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst. 2013;138:43–61.

    Article  CAS  Google Scholar 

  41. Doeven EH, Barbante GJ, Hogan CF, Francis PS. Potential-resolved electrogenerated chemiluminescence for the selective detection of multiple luminophores. ChemPlusChem. 2015;80:456–70.

    Article  CAS  Google Scholar 

  42. Kapturkiewicz A. Cyclometalated iridium(III) chelates-a new exceptional class of the electrochemiluminescent luminophores. Anal Bioanal Chem. 2016;408:7013–33.

    Article  CAS  Google Scholar 

  43. Bard AJ, et al. Electrogenerated chemiluminescence. New York: Marcel Dekker; 2004.

    Book  Google Scholar 

  44. Kerr E, Doeven EH, Barbante GJ, Hogan CF, Bower DJ, Donnelly PS, et al. Annihilation electrogenerated chemiluminescence of mixed metal chelates in solution: modulating emission colour by manipulating the energetics. Chem Sci. 2015;6:472–9.

    Article  CAS  Google Scholar 

  45. Lai RY, Bard AJ. Electrogenerated chemiluminescence. 70. The application of ECL to determine electrode potentials of tri-n-propylamine, its radical cation, and intermediate free radical in MeCN/benzene solutions. J Phys Chem A. 2003;107:3335–40.

    Article  CAS  Google Scholar 

  46. Miao WJ, Choi JP, Bard AJ. Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy) 2+3 )/tri-n-propylamine (TPrA) system revisited-A new route involving TPrA•+ cation radicals. J Am Chem Soc. 2002;124:14478–85.

    Article  CAS  Google Scholar 

  47. Chang M-M, Saji T, Bard AJ. Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions. J Am Chem Soc. 1977;99:5399–403.

    Article  CAS  Google Scholar 

  48. Butler J, Henglein A. Elementary reactions of the reduction of Tl+ in aqueous solution. Radiat Phys Chem. 1980;15:603–12.

    CAS  Google Scholar 

  49. Liu XQ, Shi LH, Niu WX, Li HJ, Xu GB. Environmentally friendly and highly sensitive Ruthenium(II) tris(2,2 ‘-bipyridyl) electrochemiluminescent system using 2-(dibutylamino) ethanol as co-reactant. Angew Chem Int Ed. 2007;46:421–4.

    Article  CAS  Google Scholar 

  50. Zhuo Y, Liao N, Chai Y-Q, Gui G-F, Zhao M, Han J, et al. Ultrasensitive apurinic/apyrimidinic endonuclease 1 immunosensing based on self-enhanced electrochemiluminescence of a Ru(II) complex. Anal Chem. 2014;86:1053–60.

    Article  CAS  Google Scholar 

  51. Long YM, Bao L, Zhao JY, Zhang ZL, Pang DW. Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy) 2+3 . Anal Chem. 2014;86:7224–8.

    Article  CAS  Google Scholar 

  52. Carrara S, Arcudi F, Prato M, De Cola L. Amine-rich nitrogen-doped carbon nanodots as platform for self-enhancing electrochemiluminescence. Angew Chem Int Ed. 2017;56:1–6.

    Article  CAS  Google Scholar 

  53. Memming R. Mechanism of electrochemical reduction of persulfates and hydrogen peroxide. J Electrochem Soc. 1969;116:785–90.

    Article  CAS  Google Scholar 

  54. Choi JP, Wong KT, Chen YM, Yu JK, Chou PT, Bard AJ. Electrogenerated chemiluminescence. 76. excited singlet state emission vs excimer emission in ter(9,9-diarylfluorene)s. J Phys Chem B. 2003;107:14407–13.

    Article  CAS  Google Scholar 

  55. Zhou Z, Xu L, Su B. Electrochemiluminescence imaging focusing: array analysis and visualization of latent fingerprints. J Electrochem. 2014;20:506–14.

    CAS  Google Scholar 

  56. Fan F-RF, Cliffel D, Bard AJ. Scanning electrochemical microscopy. 37. Light emission by electrogenerated chemiluminescence at SECM tips and their application to scanning optical microscopy. Anal Chem. 1998;70:2941–8.

    Article  CAS  Google Scholar 

  57. Zu Y, Ding Z, Zhou J, Lee Y, Bard AJ. Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip. Anal Chem. 2001;73:2153–6.

    Article  CAS  Google Scholar 

  58. Maus RG, Wightman RM. Microscopic imaging with electrogenerated chemiluminescence. Anal Chem. 2001;73:3993–8.

    Article  CAS  Google Scholar 

  59. Lei R, Stratmann L, Schäfer D, Erichsen T, Neugebauer S, Li N, et al. Imaging biocatalytic activity of enzyme-polymer spots by means of combined scanning electrochemical microscopy/electrogenerated chemiluminescence. Anal Chem. 2009;81:5070–4.

    Article  CAS  Google Scholar 

  60. Engstrom RC, Johnson KW, Desjarlais S, Chem A. Characterization of electrode heterogeneity with electrogenerated chemiluminescence. Anal Chem. 1987;59:670–3.

    Article  CAS  Google Scholar 

  61. Engstrom RC, Pharr CM, Koppang MD. Visualization of the edge effect with electrogenerated chemiluminescence. J Electroanal Chem. 1987;221:251–5.

    Article  CAS  Google Scholar 

  62. Pharr CM, Engstrom RC, Tople RA. Time-resolved imaging of current density at inlaid disk electrodes. J Electroanal Chem. 1990;278:119–28.

    Article  CAS  Google Scholar 

  63. Pantano P, Kuhr WG. Characterization of the chemical architecture of carbon-fiber microelectrodes. 2. Correlation of carboxylate distribution with electron-transfer properties. Anal Chem. 1993;65:2452–8.

    Article  CAS  Google Scholar 

  64. Hopper P, Kuhr WG. Characterization of the chemical architecture of carbon-fiber microelectrodes. 3. Effect of charge on the electron-transfer properties of ECL reactions. Anal Chem. 1994;66:1996–2004.

    Article  CAS  Google Scholar 

  65. Wightman RM, Curtis CL, Flowers PA, Maus RG, McDonald EM. Imaging microelectrodes with high-frequency electrogenerated chemiluminescence. J Phys Chem B. 1998;102:9991–6.

    Article  CAS  Google Scholar 

  66. Maus RG, Mcdonald EM, Wightman RM. Imaging of nonuniform current density at microelectrodes by electrogenerated chemiluminescence. Anal Chem. 1999;71:4944–50.

    Article  CAS  Google Scholar 

  67. Xu L, Li Y, Wu S, Liu X, Su B. Imaging latent fingerprints by electrochemiluminescence. Angew Chem Int Ed. 2012;51:8068–72.

    Article  CAS  Google Scholar 

  68. Li Y, Xu L, He Y, Su B. Enhancing the visualization of latent fingerprints by electrochemiluminescence of rubrene. Electrochem Commun. 2013;33:92–5.

    Article  CAS  Google Scholar 

  69. Xu L, Li Y, He Y, Su B. Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemiluminescence. Analyst. 2013;138:2357–62.

    Article  CAS  Google Scholar 

  70. Xu L, Zhou Z, Zhang C, He Y, Su B. Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chem Commun. 2014;50:9097–100.

    Article  CAS  Google Scholar 

  71. Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc. 2009;131:6088–9.

    Article  CAS  Google Scholar 

  72. Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem Sci. 2014;5:2568–72.

    Article  CAS  Google Scholar 

  73. Miao WJ, Bard AJ. Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal Chem. 2004;76:5379–86.

    Article  CAS  Google Scholar 

  74. Dolci LS, Zanarini S, Della Ciana L, Paolucci F, Roda A. Development of a new device for ultrasensitive electrochemiluminescence microscopy imaging. Anal Chem. 2009;81:6234–41.

    Article  CAS  Google Scholar 

  75. Wightman RM. Detection technologies. Probing cellular chemistry in biological systems with microelectrodes. Science. 2006;311:1570–4.

    Article  CAS  Google Scholar 

  76. Zhou J, Ma G, Chen Y, Fang D, Jiang D, Chen H. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol. Anal Chem. 2015;87:8138–43.

    Article  CAS  Google Scholar 

  77. Xu JJ, Huang PY, Qin Y, Jiang DC, Chen HY. Analysis of intracellular glucose at single cells using electrochemiluminescence imaging. Anal Chem. 2016;88:4609–12.

    Article  CAS  Google Scholar 

  78. Xu J, Jiang D, Qin Y, Xia J, Jiang D, Chen H. C3N4 nanosheet modified microwell array with enhanced electrochemiluminescence for total analysis of cholesterol at single cells. Anal Chem. 2017;89:2216–20.

    Article  CAS  Google Scholar 

  79. He R, Tang H, Jiang D, Chen H-Y. Electrochemical visualization of intracellular hydrogen peroxide at single cells. Anal Chem. 2016;88:2006–9.

    Article  CAS  Google Scholar 

  80. Deiss F, Sojic N, White DJ, Stoddart PR. Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. Anal Bioanal Chem. 2010;396:53–71.

    Article  CAS  Google Scholar 

  81. Szunerits S, Tam JM, Thouin L, Amatore C, Walt DR. Spatially resolved electrochemiluminescence on an array of electrode tips. Anal Chem. 2003;75:4382–8.

    Article  CAS  Google Scholar 

  82. Chovin A, Garrigue P, Vinatier P, Sojic N. Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging. Anal Chem. 2004;76:357–64.

    Article  CAS  Google Scholar 

  83. Chovin A, Garrigue P, Sojic N. Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array. Electrochim Acta. 2004;49:3751–7.

    Article  CAS  Google Scholar 

  84. Chovin A, Garrigue P, Sojic N. Remote NADH imaging through an ordered array of electrochemiluminescent nanoapertures. Bioelectrochemistry. 2006;69:25–33.

    Article  CAS  Google Scholar 

  85. Marquette CA, Degiuli A, Blum LJ. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate. Biosens Bioelectron. 2003;19:433–9.

    Article  CAS  Google Scholar 

  86. Marquette CA, Thomas D, Degiuli A, Blum LJ. Design of luminescent biochips based on enzyme, antibody, or DNA composite layers. Anal Bioanal Chem. 2003;377:922–8.

    Article  CAS  Google Scholar 

  87. Zhou Z, Xu L, Wu S, Su B. A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst. 2014;139:4934–9.

    Article  CAS  Google Scholar 

  88. Liu X, Dong M, Qi H, Gao Q, Zhang C. Electrogenerated chemiluminescence bioassay of two protein kinases incorporating peptide phosphorylation and versatile probe. Anal Chem. 2016;88:8720–7.

    Article  CAS  Google Scholar 

  89. Johnston DH, Glasgow KC, Thorp HH. Electrochemical measurement of the solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. J Am Chem Soc. 1995;117:8933–8.

    Article  CAS  Google Scholar 

  90. Hvastkovs EG, Schenkman JB, Rusling JF. Metabolic toxicity screening using electrochemiluminescence arrays coupled with enzyme-DNA biocolloid reactors and liquid chromatography-mass spectrometry. Ann Rev Anal Chem. 2012;5:79–105.

    Article  CAS  Google Scholar 

  91. Hvastkovs EG, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, et al. Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo a pyrene metabolites. Anal Chem. 2007;79:1897–906.

    Article  CAS  Google Scholar 

  92. Krishnan S, Hvastkovs EG, Bajrami B, Choudhary D, Schenkman JB, Rusling JF. Synergistic metabolic toxicity screening using microsome/DNA electrochemiluminescent arrays and nanoreactors. Anal Chem. 2008;80:5279–85.

    Article  CAS  Google Scholar 

  93. Krishnan S, Hvastkovs EG, Bajrami B, Schenkman JB, Rusling JF. Human cyt P450 mediated metabolic toxicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) evaluated using electrochemiluminescent arrays. Mol BioSyst. 2009;5:163–9.

    Article  CAS  Google Scholar 

  94. Krishnan S, Hvastkovs EG, Bajrami B, Jansson I, Schenkman JB, Rusling JF. Genotoxicity screening for N-nitroso compounds. Electrochemical and electrochemiluminescent detection of human enzyme-generated DNA damage from N-nitrosopyrrolidine. Chem Commun. 2007;17:1713–5.

  95. Wasalathanthri DP, Malla S, Bist I, Tang CK, Faria RC, Rusling JF. High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence. Lab Chip. 2013;13:4554–62.

    Article  CAS  Google Scholar 

  96. Mani V, Kadimisetty K, Malla S, Joshi AA, Rusling JF. Paper-based electrochemiluminescent screening for genotoxic activity in the environment. Environ Sci Technol. 2013;47:1937–44.

    Article  CAS  Google Scholar 

  97. Bano K, Rusling JF. Electrochemiluminescence arrays for studies of metabolite-related toxicity. Electroanalysis. 2016;28:2636–43.

    Article  CAS  Google Scholar 

  98. Bist I, Song B, Mosa IM, Keyes TE, Martin A, Forster RJ, et al. Electrochemiluminescent array to detect oxidative damage in ds-DNA using [Os(bpy)2(phen-benz-COOH)]2+/nafion/graphene films. Acs Sens. 2016;1:272–8.

    Article  CAS  Google Scholar 

  99. Sardesai NP, Barron JC, Rusling JF. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem. 2011;83:6698–703.

    Article  CAS  Google Scholar 

  100. Sardesai NP, Kadimisetty K, Faria R, Rusling JF. A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins. Anal Bioanal Chem. 2013;405:3831–8.

    Article  CAS  Google Scholar 

  101. Kadimisetty K, Malla S, Sardesai NP, Joshi AA, Faria RC, Lee NH, et al. Automated multiplexed ECL immunoarrays for cancer biomarker proteins. Anal Chem. 2015;87:4472–8.

    Article  CAS  Google Scholar 

  102. Kadimisetty K, Mosa IM, Malla S, Satterwhite-Warden JE, Kuhns TM, Faria RC, et al. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens Bioelectron. 2016;77:188–93.

    Article  CAS  Google Scholar 

  103. Venkatanarayanan A, Crowley K, Lestini E, Keyes TE, Rusling JF, Forster RJ. High sensitivity carbon nanotube based electrochemiluminescence sensor array. Biosens Bioelectron. 2012;31:233–9.

    Article  CAS  Google Scholar 

  104. Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem Mater. 2005;17:5712–9.

    Article  CAS  Google Scholar 

  105. Slinker JD, Gorodetsky AA, Lowry MS, Wang JJ, Parker S, Rohl R, et al. Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex. J Am Chem Soc. 2004;126:2763–7.

    Article  CAS  Google Scholar 

  106. Muegge BD, Richter MM. Multicolored electrogenerated chemiluminescence from ortho-metalated iridium(III) systems. Anal Chem. 2004;76:73–7.

    Article  CAS  Google Scholar 

  107. Doeven EH, Zammit EM, Barbante GJ, Hogan CF, Barnett NW, Francis PS. Selective excitation of concomitant electrochemiluminophores: tuning emission color by electrode potential. Angew Chem Int Ed. 2012;51:4354–7.

    Article  CAS  Google Scholar 

  108. Doeven EH, Zammit EM, Barbante GJ, Francis PS, Barnett NW, Hogan CF. A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems. Chem Sci. 2013;4:977–82.

    Article  CAS  Google Scholar 

  109. Doeven EH, Barbante GJ, Kerr E, Hogan CF, Endler JA, Francis PS. Red–green–blue electrogenerated chemiluminescence utilizing a digital camera as detector. Anal Chem. 2014;86:2727–32.

    Article  CAS  Google Scholar 

  110. Suk J, Wu Z, Lei W, Bard AJ. Electrochemistry, electrogenerated chemiluminescence, and excimer formation dynamics of intramolecular π-stacked 9-naphthylanthracene derivatives and organic nanoparticles. J Solid State Electrochem. 2011;15:2279–91.

    Article  CAS  Google Scholar 

  111. Qi H, Teesdale JJ, Pupillo RC, Rosenthal J, Bard AJ. Synthesis, electrochemistry, and electrogenerated chemiluminescence of two BODIPY-appended bipyridine homologues. J Am Chem Soc. 2013;135:13558–66.

    Article  CAS  Google Scholar 

  112. Haghighatbin MA, Lo S, Burn P, Hogan CF. Electrochemically tuneable multi-colour electrochemiluminescence from a single emitter. Chem Sci. 2016;7:6974–80.

    Article  CAS  Google Scholar 

  113. Hesari M, Swanick KN, Lu J-S, Whyte R, Wang S, Ding Z. Highly efficient dual-color electrochemiluminescence from BODIPY-capped PbS nanocrystals. J Am Chem Soc. 2015;137:11266–9.

    Article  CAS  Google Scholar 

  114. Lin Z, Chen X, Jia T, Wang X, Xie Z, Oyama M, et al. Fabrication of a colorimetric electrochemiluminescence sensor. Anal Chem. 2009;81:830–3.

    Article  CAS  Google Scholar 

  115. Delaney JL, Hogan CF, Tian J, Shen W. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem. 2011;83:1300–6.

    Article  CAS  Google Scholar 

  116. Fosdick SE, Knust KN, Scida K, Crooks RM. Bipolar electrochemistry. Angew Chem Int Ed. 2013;52:10438–56.

    Article  CAS  Google Scholar 

  117. Bouffier L, Arbault S, Kuhn A, Sojic N. Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. Anal Bioanal Chem. 2016;408:7003–11.

    Article  CAS  Google Scholar 

  118. Liu R, Zhang C, Liu M. Open bipolar electrode-electrochemiluminescence imaging sensing using paper-based microfluidics. Sensor Actuat B Chem. 2015;216:255–62.

    Article  CAS  Google Scholar 

  119. Lu W, Bao N, Ding S. A bipolar electrochemiluminescence sensing platform based on pencil core and paper reservoirs. RSC Adv. 2016;6:25388–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Nature Science Foundation of China (21335001, 21575126) and the Nature Science Foundation of Zhejiang Province (LR14B050001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Su.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Liu, Y., Cao, Z. et al. Imaging Analysis Based on Electrogenerated Chemiluminescence. J. Anal. Test. 1, 14 (2017). https://doi.org/10.1007/s41664-017-0013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-017-0013-9

Keywords

Navigation