Feeding the world: genetically modified crops versus agricultural biodiversity

Abstract

The growing demand for food poses major challenges to humankind. We have to safeguard both biodiversity and arable land for future agricultural food production, and we need to protect genetic diversity to safeguard ecosystem resilience. We must produce more food with less input, while deploying every effort to minimize risk. Agricultural sustainability is no longer optional but mandatory. There is still an on-going debate among researchers and in the media on the best strategy to keep pace with global population growth and increasing food demand. One strategy favors the use of genetically modified (GM) crops, while another strategy focuses on agricultural biodiversity. Here, we discuss two obstacles to sustainable agriculture solutions. The first obstacle is the claim that genetically modified crops are necessary if we are to secure food production within the next decades. This claim has no scientific support, but is rather a reflection of corporate interests. The second obstacle is the resultant shortage of research funds for agrobiodiversity solutions in comparison with funding for research in genetic modification of crops. Favoring biodiversity does not exclude any future biotechnological contributions, but favoring biotechnology threatens future biodiversity resources. An objective review of current knowledge places GM crops far down the list of potential solutions in the coming decades. We conclude that much of the research funding currently available for the development of GM crops would be much better spent in other research areas of plant science, e.g., nutrition, policy research, governance, and solutions close to local market conditions if the goal is to provide sufficient food for the world’s growing population in a sustainable way.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    Agrobiodiversity defined as: all non-GM cultivated species including varieties and landraces.

  2. 2.

    GM crops are defined here as new varieties of crop species developed by molecular modification through the insertion of foreign genetic material.

References

  1. AATF (African Agricultural Technology Foundation) (2012) Support biotechnology development in Africa—private sector urged. Press release AATF. http://www.aatf-africa.org, 3 p.

  2. Ahmed I (2012) Killer seeds: the devastating impacts of Monsanto’s genetically modified seeds in India. Global Research. http://www.globalresearch.ca/killer-seeds-the-devastating-impacts-of-monsanto-s-genetically-modified-seeds-in-india/. Accessed: 12 Jan 2012

  3. Alnwick D (1996) Significance of micronutrient deficiencies in developing and industrialized countries. In: Combs GF, Welch RM, Duxbury JM, Uphoff NT, Nesheim MC (eds) Food-based approaches to preventing micronutrient malnutrition. An international research agenda. Cornell University, Ithaca, NY, USA

    Google Scholar 

  4. Barta P (2007) Feeding billions, a grain at a time. The Wall Street Journal, pp. A1. http://online.wsj.com/article/SB118556810848880619.html. 28 July 2007

  5. Beyer P (2010) Golden rice and ‘golden’ crops for human nutrition. New Biotechnol 27:478–481

    Article  CAS  Google Scholar 

  6. Borlaug NE (2000) Ending world hunger. The promise of biotechnology and the threat of antiscience zealotry. Plant Physiol 124:487–490

    PubMed  Article  CAS  Google Scholar 

  7. Bouisa HE, Chassyb BM, Ochandac JO (2003) Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci Technol 14:191–209

    Article  Google Scholar 

  8. Brookes G (2002) The farm level impact of using Bt maize in Spain. PG Economics, UK

    Google Scholar 

  9. Brun T, Reynaud J, Chevassus-Agnes S (1989) Food and nutritional impact of one home garden project in Senegal. Ecol Food Nutr 23:91–108

    Article  Google Scholar 

  10. Bullock JM, Pywell RF, Walker KJ (2007) Long-term enhancement of agricultural production by restoration of biodiversity. J Appl Ecol 44:6–12

    Article  Google Scholar 

  11. Burke M, Lobell D, Guarino L (2009) Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob Environ Change 19:317–325

    Article  Google Scholar 

  12. Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28(4):319–321

    PubMed  Article  CAS  Google Scholar 

  13. Carpenter JE (2011) Impacts of GE crops on biodiversity. ISB News Report June 2011, 4 p.

  14. Carpenter JE, Gianessi L (1999) Herbicide tolerant soybeans: why growers are adopting roundup ready varieties. AgBio-Forum 2(2):65–72

    Google Scholar 

  15. Conner AJ, Mercer CF (2007) Breeding for success: diversity in action. Euphytica 154:261–262

    Article  Google Scholar 

  16. Danish Ministry of Food Agriculture and Fisheries (2009) GM crops—what can it be used for? [in Danish: Fødevareministeriet GMO—Hvad kan vi bruge det til?], Fødevareministeriet. September 2009. 236 p.

  17. Dempewolf H, Bordoni P, Rieseberg LH, Engels JMM (2010) Food security: crop species diversity. Science 328:169–170

    PubMed  Article  CAS  Google Scholar 

  18. Duchin F (2005) Sustainable consumption of food: a framework for analyzing scenarios about changes in diets. J Ind Ecol 9:99–114

    Article  Google Scholar 

  19. Enriquez J (2001) Green biotechnology and European competitiveness. Trends Biotechnol 19(4):135–139

    PubMed  Article  CAS  Google Scholar 

  20. European Union (2010) A decade of EU-funded GMO research (2001–2010). ISBN 978-92-79-16344-9. doi:10.2777/97784. 268 p

  21. Eyzaguirre PB, Linares OF (2004) Home gardens and agrobiodiversity. Smithsonian, Washington, DC, USA

    Google Scholar 

  22. FAO (2007) The state of food and agriculture. Rome, xiv. 222 p.

  23. FAO (2010) Agricultural biotechnologies in developing countries: options and opportunities in crops, forestry, livestock, fisheries and agro-industry to face the challenges of food insecurity and climate change (ABDC-10). FAO International Technical Conference, Guadalajara, Mexico, 65 p

    Google Scholar 

  24. Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, Mundt CC, Munk L, Nadziak J, Newton AC, De Vallavielle-Pope C, Wolfe MS (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813–837

    Article  Google Scholar 

  25. Fischer RA (2009) Farming systems of Australia: exploiting the synergy between genetic improvement and agronomy in crop physiology. In: Sadras V, Calderini D (eds). Elsevier: Amsterdam, pp 23–54

  26. Frison E (2009) Director General calls for investment in true food security. Biodiversity news. http://www.bioversityinternational.org/news_and_events/news/news/article.

  27. Frison E, Cherfas J, Hodgkin T (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253

    Article  Google Scholar 

  28. Galluzzi G, Eyzaguirre P, Negri V (2010) Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers Conserv 19:3635–3654

    Article  Google Scholar 

  29. Gassmann AJ, Petzold-Maxwell JL, Keweshan R, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6(7):e22629. doi:10.1371/journal.pone.0022629

    PubMed  Article  CAS  Google Scholar 

  30. Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42(6):1780–1790

    Article  Google Scholar 

  31. Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292

    Article  Google Scholar 

  32. GM Compass (2009) Commercial GM crops in the EU in 2008. http://www.GMcompass.org/eng/agri_biotechnology/GM_planting/%3E392.gm_maize_cultivation_europe_2008.html.

  33. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–817

    PubMed  Article  CAS  Google Scholar 

  34. Gouse M, Pray C, Schimmelpfennig D, Kirsten J (2006) Three seasons of subsistence insect-resistant maize in South Africa: have smallholders benefited? AgBioforum 9:15–22

    Google Scholar 

  35. Gruère GP, Sun Y (2012) Measuring the contribution of Bt cotton adoption to India’s cotton yields leap. IFPRI Discussion Paper 01170, 28 p.

  36. Gruère GP, Giuliani A, Smale M (2008) Marketing underutilized plant species for the benefit of the poor: a conceptual framework. In: Kontoleon A, Pasqual U, Smale M (eds) Agrobiodiversity conservation and economic development. Routledge, Abingdon, UK, pp 73–87

    Google Scholar 

  37. Grum M (2009) Threats to biodiversity. In: Rudebjer P, Van Schlagen B, Chakeredza S, Karnau H (eds). Proc. Learning agrobiodiversity: options for universities in Sub-Saharan Africa. 21–23 January 2009, Nairobi, Kenya, pp 78–80

  38. Guillaume P, Gruère, Purvi Mehta-Bhatt P, Sengupta D (2008) Bt cotton and farmer suicides in India, reviewing the evidence. IFPRI Discussion Paper 00808. International Food Policy Institute (IFPRI). http://www.ifpri.org/publication/bt-cotton-andfarmer-suicides-india

  39. Gurian-Sherman D (2009) Failure to yield—evaluating the performance of genetically engineered crops. Union of Concerned Scientists, 51 p.

  40. Hall L, Dexter J, Jhala A, McPherson M (2009) Biology matters: seed- and pollen-mediated gene flow in three oilseed crops, safflower, flax and oilseed rape. GMCC-09 Adelaide. http://www.gmcc-09.com/wp-content/uploads/hall.pdf.

  41. Hector A, Loreau M (2005) Relationships between biodiversity and production in grasslands at local and regional scales. In: McGilloway DA (ed) Grassland: a global resource. Wageningen Academic, Wageningen, The Netherlands, pp 295–304

    Google Scholar 

  42. Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684

    PubMed  Article  CAS  Google Scholar 

  43. IAASTD (2009) Agriculture at a crossroads. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD), 250 p.

  44. IFOAM (2009) Organic agriculture—a guide to climate change and food security. http://www.ifoam.org/growing_organic/1_arguments_for_oa/environmental_benefits/pdfs/IFOAM-CC-Guide-Web.pdf

  45. IPCC (2007) Climate change 2007: synthesis report, contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Pachauri RK, Reisinger A (eds). IPCC: Geneva, Switzerland, 104 p

  46. ISF (International Seed Federation) (2011) Agriculture under pressure. http://www.worldseed.org/isf/home.html

  47. ISIS (2010) Farmer suicides and Bt cotton nightmare unfolding in India. ISIS Report 06/01/10. www.i-sis.org.uk, 17 p.

  48. Jacobsen S-E (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177

    Article  Google Scholar 

  49. Jacobsen S-E (2011) The situation for Quinoa and its production in Southern Bolivia: from economic success to environmental disaster. J Agron Crop Sci 197:390–399

    Article  Google Scholar 

  50. Jacobsen S-E, Mujica A, Ortiz R (2003) The global potential for quinoa and other Andean crops. Food Rev Int 19:139–148

    Article  Google Scholar 

  51. Jacobsen S-E, Jensen CR, Liu F (2012) Improving crop production in the arid Mediterranean climate. Field Crops Res 128:34–47

    Article  Google Scholar 

  52. Jain HK (2010) Green revolution: history, impact and future. Studium Press, Housten

    Google Scholar 

  53. James C (2011) Global status of commercialized biotech/GM crops: 2011. ISAAA Brief No. 43. ISAAA, Ithaca, NY

    Google Scholar 

  54. Juma C (2011) The new harvest—agricultural innovations in Africa. Oxford University Press, Oxford, p 296

    Google Scholar 

  55. Kolady DE, Lesser W (2012) Genetically-engineered crops and their effects on varietal diversity: a case of Bt eggplant in India. Agric Human Values 29:3–15

    Article  Google Scholar 

  56. Lal R (2008) Soils and sustainable agriculture. A review. Agron Sustain Dev 28:57–64

    Article  Google Scholar 

  57. Larigauderie A, Mooney HA (2010) The international year of biodiversity: an opportunity to strengthen the science–policy interface for biodiversity and ecosystem services. Editorial overview. Curr Opin Environ Sustain 2:1–2

    Article  Google Scholar 

  58. Lawson LG, Larsen AS, Pedersen SM, Gylling M (2009) Perceptions of genetically modified crops among Danish farmers. Acta Agr Scand, C-F E 6(2):99–118

    Google Scholar 

  59. Lichtfouse E, Navarrete M, Debaeke P, Souchere V, Alberola C, Menassieu J (2009) Agronomy for sustainable agriculture. A review. Agron Sustain Dev 29:1–6

    Article  Google Scholar 

  60. Nair PKR (2001) Do tropical homegardens elude science, or is it the other way around? Agroforest Syst 53:239–245

    Article  Google Scholar 

  61. NAS [National Academy of Sciences] (2010) The impact of genetically engineered crops on farm sustainability in the United States. National Academies: NW Washington, D.C. www.nap.edu.

  62. Padulosi S, Heywood V, Hunter D, Jarvis A (2011) Underutilized species and climate change: current status and outlook. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change, 1st edn. Wiley, New York, pp 507–521

    Google Scholar 

  63. Parry MAJ, Hawkesford MJ (2012) An integrated approach to crop genetic improvement. J Integr Plant Biol 54:250–259

    PubMed  Article  Google Scholar 

  64. Pingali P, Raney T (2005) From the green revolution to the gene revolution: how will the poor fare? ESA working paper no. 05–09. www.fao.org/es/esa, 17 p.

  65. Pinstrup-Andersen P (2010a) Ny viden er farlig for en ideologi, som har spillet fallit. Jord og Viden 4:8–10

    Google Scholar 

  66. Pinstrup-Andersen P (2010b) The advantages of genetic engineering in agriculture include increased food production and reduced hunger—benefits for hungry and malnourished in developing countries outweigh disadvantages. http://www.monsanto.com/biotech-GM/asp/experts.asp?id=PinstrupAndersen#mid.

  67. Porter JR, Challinor A, Ewert F, Falloon P, Fischer T, Gregory P, Van Ittersum MK, Olesen JE, Moore KJ, Rosenzweig C, Smith P (2010) Food security: focus on agriculture. Science 328:172

    PubMed  Article  CAS  Google Scholar 

  68. Potocnik J (2010) Green living. Parliament Magazine 31 May 2010, pp 40–41.

  69. Pretty JN, Morison JIL, Hine RE (2003) Reducing food poverty by increasing agricultural sustainability in developing countries. Agr Ecosyst Environ 95:217–234

    Article  Google Scholar 

  70. Proulx R, Wirth C, Voigt W, Weigelt A, Roscher C, Attinger S, Baade J, Barnard RL, Buchmann N, Buscot F, Eisenhauer N, Fischer M, Gleixner G, Halle S, Hildebrandt A, Kowalski E, Kuu A, Lange M, Milcu A, Niklaus PA, Oelmann Y, Rosenkranz S, Sabais A, Scherber C, Scherer-Lorenzen M, Scheu S, Schulze E-D, Schumacher J, Schwichtenberg G, Soussana J-F, Temperton VM, Weisser WW, Wilcke W, Schmid B (2010) Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands. PLoS One 5:e13382

    PubMed  Article  Google Scholar 

  71. Qaim M (2009) The economics of genetically modified crops. Annu Rev Res Econ 1:665–693

    Article  Google Scholar 

  72. Rudebjer P (2009) Agrobiodiversity in food systems, ecosystems and education systems. In: Rudebjer P, Van Schlagen B, Chakeredza S, Karnau H (eds). Proc. Learning agrobiodiversity: options for universities in Sub-Saharan Africa. 21–23 January 2009. Nairobi, Kenya, pp 28–33

  73. Salinger G (2012) Five agricultural innovations to improve biodiversity. http://blogs.worldwatch.org/nourishingtheplanet/five-agricultural-innovations-to-improve-biodiversity/

  74. Shackleton CM, Pasquini MW, Drescher AW (2009) African indigenous vegetables in urban agriculture. Earthscan, London

    Google Scholar 

  75. Schiøler E, Pinstrup-Andersen P (2009) Seeds of contention. Oxford University Press, Oxford, p 164

    Google Scholar 

  76. Scientific American (2009) Do seed companies control GM crop research? Sci Am 13 August 2009. http://www.scientificamerican.com/article.cfm?id=do-seed-companies-control-gm-crop-research

  77. Stone GD (2010) The anthropology of genetically modified crops. Annu Rev Anthropol 39:381–400. doi:10.1146/annurev.anthro.012809.105058

    Article  Google Scholar 

  78. Sørensen M (2004) Supercrop—the yam bean. Nat Hist Mag 113(3):38–43

    Google Scholar 

  79. Tari I, Laskay G, Takacs Z, Poor P (2012) Response of Sorghum to abiotic stresses: a review. J Agro Crop Sci. doi:10.1111/jac.12017

  80. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    PubMed  Article  CAS  Google Scholar 

  81. Tirado R, Johnston P (2010) Food security: GM crops threaten biodiversity. Science 328:170–171

    PubMed  Article  CAS  Google Scholar 

  82. Trewavas A (2002) GM food is the best option we have. In: Pence G (ed) The ethics of food, a reader for the twenty-first century. Rowman, Lanham, pp 148–155

    Google Scholar 

  83. Ulukan H (2009) The evolution of cultivated plant species: classical plant breeding versus genetic engineering. Plant Syst Evol 280:133–142

    Article  Google Scholar 

  84. UN (2010) 2015 Millenium development goals. United Nations Summit 20–22 September 2010, New York, High-level Plenary Meeting of the General Assembly. UN Department of Public Information—DPI/2650 G,. September 2010

  85. USDA (2007/2010) National Agricultural Statistics Service (NASS). Agricultural Statistics Board, US Department of Agriculture Acreage.

  86. Vandana SV, Barker D, Lockhart C (2011) The GMO emperor has no clothes—a global citizens report on the state of GMOs, synthesis report. Navdanya International. http://image.guardian.co.uk/sys-files/Environment/documents/2011/10/19/GMOEMPEROR.pdf

  87. Vidal J (2011a) GM foods: a “biotech revolution”? Guardian.co.uk, 19 October 2011

  88. Vidal J (2011b) GM crops promote superweeds, food insecurity and pesticides, say NGOs. Guardian.co.uk, 19 October 2011

  89. Wang S, Just DR, Pinstrup-Andersen P (2008) Bt-cotton and secondary pests. Int J Biotechnol 10:113–120

    Article  Google Scholar 

  90. Wang ZJ, Lin H, Huang J, Hu R, Rozelle S, Pray C (2009) Bt cotton in China: are secondary insect infestations offsetting the benefits in farmer fields? Agr Sci China 8(1):83–90

    Article  Google Scholar 

  91. Weiner J, Andersen SB, Wille WKM, Griepentrog HW, Olsen JM (2010) Evolutionary agroecology: the potential for cooperative, high density, weed-suppressing cereals. Evol Applic 3:473–475

    Article  Google Scholar 

  92. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sven-Erik Jacobsen.

About this article

Cite this article

Jacobsen, SE., Sørensen, M., Pedersen, S.M. et al. Feeding the world: genetically modified crops versus agricultural biodiversity. Agron. Sustain. Dev. 33, 651–662 (2013). https://doi.org/10.1007/s13593-013-0138-9

Download citation

Keywords

  • GMO
  • Underutilized crops
  • Andean crops
  • Food production
  • Agrobiodiversity
  • Sustainability