Skip to main content
Log in

Kinetic properties of Penicillium cyclopium lipases studied with vinyl esters

  • Method
  • Published:
Lipids

Abstract

Penicillium cyclopium produces two lipases with different substrate specificities. Lipase I is predominantly active on triacylglycerols whereas lipase II hydrolyzes mono- and diacylglycerols but not triacylglycerols. In this study, we compared the kinetic properties of P. cyclopium lipases and human pancreatic lipase, a classical triacylglycerol lipase, by using vinyl esters as substrates. Results indicate that P. cyclopium lipases I and II and human pancreatic lipase hydrolyze solutions of vinyl propionate or vinyl butyrate at high relative rates compared with emulsions of the same esters, although, in all cases, maximal activity is reached in the presence of emulsified particles, at substrate concentrations above the solubility limit. It appears that partially water-soluble short-chain vinyl esters are suitable substrates for comparing the activity of lipolytic enzymes of different origin and specificity toward esters in solution and in emulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iwai, M., Okumura, S., and Tsujisaka, Y. (1975) The Comparison of the Properties of Two Lipases from Penicillium cyclopium Westring, Agr. Biol. Chem. 39, 1063–1070.

    CAS  Google Scholar 

  2. Okumura, S., Iwai, M., and Tsujisaka, Y. (1980) Purification and Properties of Partial Glyceride Hydrolase of Penicillium cyclopium M1, J. Biochem. 87, 205–211.

    PubMed  CAS  Google Scholar 

  3. Isobe, K., Akiba, T., and Yamaguchi, S. (1988) Crystallization and Characterization of Lipase from Penicillium cyclopium, Agr. Biol. Chem. 52, 41–47.

    CAS  Google Scholar 

  4. Ibrik, A., Chahinian, H., Rugani, N., Sarda, L., and Comeau, L.C. (1998) Biochemical and Structural Characterization of Triacylglycerol Lipase from Penicillium cyclopium, Lipids 33, 377–384.

    PubMed  CAS  Google Scholar 

  5. Stocklein, W., Sztajer, H., Menge, U., and Schmid, R.D. (1993) Purification and Properties of a Lipase from Penicillium expansum, Biochim. Biophys. Acta 1168, 181–189.

    PubMed  CAS  Google Scholar 

  6. Gulomova, K., Ziomek, E., Schrag, J.D., Davranov, K., and Cygler, M. (1996) Purification and Characterization of a Penicillium sp. Lipase Which Discriminates Against Diglycerides, Lipids 31, 379–384.

    Article  PubMed  CAS  Google Scholar 

  7. Chahinian, H., Vanot, G., Ibrik, A., Rugani, N., Sarda, L., and Comeau, L.C. (2000) Production of Extracellular Lipases by Penicillium cyclopium Purification and Characterization of a Partial Acylglycerol Lipase, Biosci. Biotechnol. Biochem. 64, 215–222.

    Article  PubMed  CAS  Google Scholar 

  8. Isobe, K., and Nokihara, K., (1993) Primary Structure Determination of Mono- and Diacylglycerol Lipase from Penicillium camembertii FEBS Lett. 320, 101–106.

    Article  PubMed  CAS  Google Scholar 

  9. Brockerhoff, H. (1968) Substrate Specificity of Pancreatic Lipase, Biochim. Biophys. Acta 159, 296–303.

    PubMed  CAS  Google Scholar 

  10. Brockerhoff, H. (1970) Substrate Specificity of Pancreatic Lipase. Influence of the Structure of Fatty Acids on the Reactivity of Esters, Biochim. Biophys. Acta 212, 92–101.

    PubMed  CAS  Google Scholar 

  11. Yamaguchi, S., and Mase, T. (1991) Purification and Characterization of Mono- and Diacylglycerol Lipase Isolated from Penicillium camembertii U-150, Appl. Microbiol. Biotechnol. 34, 720–725.

    Article  CAS  Google Scholar 

  12. Kaga, H., Siegmund, B., Neufellner, E., Faber, K., and Paltauf, F. (1994) Stabilization of Candida Lipase Against Acetaldehyde by Adsorption on Celite, Biotechnol. Lett. 8, 369–374.

    CAS  Google Scholar 

  13. Weber, H.K., Stecher, H., and Faber, K. (1995) Sensitivity of Microbial Lipases to Acetaldehyde Formed by Acyl-Transfer Reactions from Vinyl Esters, Biotechnol. Lett. 17, 803–806.

    Article  CAS  Google Scholar 

  14. Kita, Y., Takebe, Y., Murata, K., Naka, T., and Akai, S. (1996) Vinyl Acetate as a Novel Highly Reactive and Reliable Acyl Donor for Enzymatic Resolution of Alcohols, Tetrahedron Lett. 37, 1369–1372.

    Google Scholar 

  15. Lowry O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin-Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  16. Entressangles, B., and Desnuelle, P. (1970) Action of Pancreatic Lipase on Aggregated Glyceride Molecules in an Isotropic System, Biochim. Biophys. Acta 159, 285–295.

    Google Scholar 

  17. Verger, R. (1997) Interfacial Activation of Lipases: Facts and Artifacts, TIBTECH. 15, 32–38.

    CAS  Google Scholar 

  18. Hjorth, A., Carrière, F., Cudrey, C., Wöldike, H., Boel, E., Lawson, D.M., Ferrato, F., Cambillau, C., Dodson, G.G., Thim, L., and Verger, R. (1993) A Structural Domain (the lid) Found in Pancreatic Lipase Is Absent in the Guinea Pig (Phospho)lipase, Biochemistry 32, 4702–4707.

    Article  PubMed  CAS  Google Scholar 

  19. Martinelle, M., Holmquist, M., and Hult, K. (1995) On the Interfacial Activation of Candida antarctica Lipase A and B as Compared with Humicola lanuginosa Lipase, Biochim. Biophys. Acta 1258, 272–276.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chahinian, H., Nini, L., Boitard, E. et al. Kinetic properties of Penicillium cyclopium lipases studied with vinyl esters. Lipids 35, 919–925 (2000). https://doi.org/10.1007/S11745-000-0601-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S11745-000-0601-3

Keywords

Navigation