Skip to main content
Log in

Intravenously injected [1-14C]arachidonic acid targets phospholipids, and [1-14C]palmitic acid targets neutral lipids in hearts of awake rats

  • Published:
Lipids

Abstract

The differential uptake and targeting of intravenously infused [1-14C]palmitic ([1-14C] 16∶0) and [1-14C]arachidonic ([1-14C]20∶4n−6) acids into heart lipid pools were determined in awake adult male rats. The fatty acid tracers were infused (170 μCi/kg) through the femoral vein at a constant rate of 0.4 mL/min over 5 min. At 10 min postinfusion, the rats were killed using pentobarbital. The hearts were rapidly removed, washed free of exogenous blood, and frozen in dry ice. Arterial blood was withdrawn over the course of the experiment to determine plasma radiotracer levels. Lipids were extracted from heart tissue using a two-phase system, and total radioactivity was measured in the nonvolatile aqueous and organic fractions. Both fatty acid tracers had similar plasma curves, but were differentially distributed into heart lipid compartments. The extent of [1-14C]20∶4n−6 esterification into heart phospholipids, primarily choline glycerophospholipids, was elevated 3.5-fold compared to [1-14C]16∶0. The unilateral incorporation coefficient, k *, which represents tissue radioactivity divided by the integrated plasma radioactivity for heart phospholipid, was sevenfold greater for [1-14C]20∶4n−6 than for [1-14C]16∶0. In contrast, [1-14C]16∶0 was esterified mainly into heart neutral lipids, primarily triacylglycerols (TG), and was also found in the nonvolatile aqueous compartment. Thus, in rat heart, [1-14C]20∶4n−6 was primarily targeted for esterification into phospholipids, while [1-14C]16∶0 was targeted for esterification into TG or metabolized into nonvolatile aqueous components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CE:

cholesteryl esters

CerPCho:

sphingomyelin

ChoGpl:

choline glycerophospholipids

DG:

diacylglycerols

EtnGpl:

ethanolamine glycerophospholipids

FFA:

free fatty acids

IL-1β:

interleukin-1β

k * :

unilateral incorporation coefficient

PET:

positron emission tomography

PlsCho:

choline

PlsEtn:

ethanolamine plasmalogen

PtdIns:

phosphatidylinositol

PtdOH:

phosphatidic acid

PtdSer:

phosphatidylserine

TG:

triacylglycerols

TLC:

thin-layer chromatography

References

  1. Gunn, M.D., Sen, A., Chang, A., Willerson, J.T., Buja, L.M., and Chien, K.R. (1985) Mechanisms of Accumulation of Arachidonic Acid in Cultured Myocardial Cells During ATP Depletion, Am. J. Physiol. 249, H1188-H1194.

    PubMed  CAS  Google Scholar 

  2. Freyss-Beguin, M., Millanvoye-Van Brussel, E., and Duval, D. (1989) Effect of Oxygen Deprivation on Metabolism of Arachidonic Acid by Cultures of Rat Heart Cells, Am. J. Physiol. 257 (Heart Circ, 26), H444-H451.

    PubMed  CAS  Google Scholar 

  3. Miyazaki, Y., Gross, R.W., Sobel, B.E., and Saffitz, J.E. (1990) Selective Turnover of Sarcolemmal Phospholipids with Lethal Cardiac Myocyte Injury, Am. J. Physiol. 259 (Cell Physiol. 28), C325-C331.

    PubMed  CAS  Google Scholar 

  4. McHowat, J., and Liu, S. (1997) Interleukin-1β Stimulates Phospholipase A2 Activity in Adult Rat Ventricular Myocytes, Am. J. Physiol. 272 (Cell Phys. 41), C450-C456.

    PubMed  CAS  Google Scholar 

  5. Liu, S.J., and McHowat, J. (1998) Stimulation of Different Phospholipase A2 Isoforms by TNF-α and IL-1β in Adult Rat Ventricular Myocytes, Am. J. Physiol. 275 (Heart Circ. 44), H1462-H1472.

    PubMed  CAS  Google Scholar 

  6. Lokuta, A.J., Cooper, C., Gaa, S.T., Wang, H.E., and Rogers, T.B. (1994) Angiotensin II Stimulates the Release of Phospholipid-Derived Second Messengers Through Multiple Receptor Subtypes in Heart Cells, J. Biol. Chem. 269, 4832–4838.

    PubMed  CAS  Google Scholar 

  7. Pavoine, C., Magne, S., Sauvadet, A., and Pecker, F. (1999) Evidence for a β2-Adrenergic/Arachidonic Acid Pathway in Ventricular Cardiomyocytes. Regulation by the β1-Adrenergic/cAMP Pathway, J. Biol. Chem. 274, 628–637.

    Article  PubMed  CAS  Google Scholar 

  8. Meij, J.T.A., and Lamers, J.M.J. (1989) Alpha-1-adrenergic Stimulation of Phosphoinositide Breakdown in Cultured Neonatal Rat Ventricular Myocytes, Mol. Cell Biochem. 88, 73–75.

    Article  PubMed  CAS  Google Scholar 

  9. de Chaffoy de Courcelles, D. (1989) Is There Evidence of a Role of the Phosphoinositol-Cycle in the Myocardium? Mol. Cell Biochem. 88, 65–72.

    Article  PubMed  Google Scholar 

  10. Liu, S.-Y., Yu, C.-H., Hays, J.-A., Panagia, V., and Dhalla, N.S. (1997) Modification of Heart Sarcolemmal Phosphoinositide Pathway by Lysophosphatidylcholine, Biochim. Biophys. Acta 1349, 264–274.

    PubMed  CAS  Google Scholar 

  11. DeGrella, R.F., and Light, R.J. (1980) Uptake and Metabolism of Fatty Acids by Dispersed Adult Rat Heart Myocytes. I. Kinetics of Homologous Fatty Acids, J. Biol. Chem. 255, 9731–9738.

    PubMed  CAS  Google Scholar 

  12. Hohl, C.M., and Rosen, P. (1987) The Role of Arachidonic Acid in Rat Heart Cell Metabolism, Biochim. Biophys. Acta 921, 356–363.

    PubMed  CAS  Google Scholar 

  13. Klein, M.S., Goldstein, R.A., Welch, M.J., and Sobel, B.E. (1979) External Assessment of Myocardial Metabolism with [11C]Palmitate in Rabbit Hearts, Am. J. Physiol. 237, H51-H57.

    PubMed  CAS  Google Scholar 

  14. Tamboli, A., O’Looney, P., Vander Maten, M., and Vahouny, G.V. (1983) Comparative Metabolism of Free and Esterified Fatty Acids by the Perfused Rat Heart and Rat Cardiac Myocytes, Biochim. Biophys. Acta 750, 404–410.

    PubMed  CAS  Google Scholar 

  15. DeGrella, R.F., and Light, R.J. (1980) Uptake and Metabolism of Fatty Acids by Dispersed Adult Rat Heart Myocytes. II. Inhibition of Albumin and Fatty Acid Homologues, and the Effect of Temperature and Metabolic Reagents, J. Biol. Chem. 255, 9739–9745.

    PubMed  CAS  Google Scholar 

  16. Saddik, M., and Lopaschku, G.D. (1991) The Fate of Arachidonic Acid and Linoleic Acid in Isolated Working Rat Hearts Containing Normal or Elevated Levels of Coenzyme A, Biochim. Biophys. Acta 1086, 217–224.

    PubMed  CAS  Google Scholar 

  17. Hagve, T.-A., and Sprecher, H. (1989) Metabolism of Long-Chain Polyunsaturated Fatty Acids in Isolated Cardiac Myocytes, Biochim. Biophys. Acta 1001, 338–344.

    PubMed  CAS  Google Scholar 

  18. Freed, L.M., Wakabayashi, S., Bell, J.M., and Rapoport, S.I. (1994) Effect of Inhibition of β-Oxidation on Incorporation of [U-14C]Palmitate and [1-14C]Arachidonate into Brain Lipids, Brain Res. 645, 41–48.

    Article  PubMed  CAS  Google Scholar 

  19. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  20. Radin, N.S. (1988) Lipid Extraction, in Neuromethods 7 Lipids and Related Compounds (Boulton, A.A., Baker, G.B., and Horrocks, L.A., eds.) pp. 1–62, Humana Press, Clifton, NJ.

    Google Scholar 

  21. Marcheselli, V.L., Scott, B.L., Reddy, T.S., and Bazan, N.G. (1988) Quantitative Analysis of Acyl Group Composition of Brain Phospholipids, Neutral Lipids, and Free Fatty Acids, in Neuromethods 7 Lipids and Related Compounds (Boulton, A.A., Baker, G.B., and Horrocks, L.A., eds.) pp. 83–110, Humana Press, Clifton, NJ.

    Google Scholar 

  22. Murphy, E.J., Stephens, R., Jurkowitz-Alexander, M., and Horrocks, L.A. (1993) Acidic Hydrolysis of Plasmalogens Followed by High-Performance Liquid Chromatography, Lipids 28, 565–568.

    PubMed  CAS  Google Scholar 

  23. Kimes, A.S., Sweeney, D., London, E.D., and Rapoport, S.I. (1983) Palmitate Incorporation into Different Brain Regions in the Awake Rat, Brain Res. 274, 291–301.

    Article  PubMed  CAS  Google Scholar 

  24. Gross, R.W. (1984) High Plasmalogen and Arachidonic Acid Content of Canine Myocardial Sarcolemma: A Fast Atom Bombardment Mass Spectroscopic and Gas Chromatography-Mass Spectroscopic Characterization, Biochemistry 23, 158–165.

    Article  PubMed  CAS  Google Scholar 

  25. Gross, R.W. (1985) Identification of Plasmalogen as the Major Phospholipid Constituent of Cardiac Sarcoplasmic Reticulum, Biochemistry 24, 1662–1668.

    Article  PubMed  CAS  Google Scholar 

  26. Kang, J.X., Xiao, Y.-F., and Leaf, A. (1995) Free, Long-Chain, Polyunsaturated Fatty Acids Reduce Membrane Electrical Excitability in Neonatal Rat Cardiac Myocytes, Proc. Natl. Acad. Sci. USA 92, 3997–4001.

    Article  PubMed  CAS  Google Scholar 

  27. Honore, E., Barhanin, J., Attali, B., Lesage, F., and Lazdunski, M. (1994) External Blockade of the Major Cardiac Delayed-Rectifier K+ Channel (Kv1.5) by Polyunsaturated Fatty Acids, Proc. Natl. Acad. Sci. USA 91, 1937–1944.

    Article  PubMed  CAS  Google Scholar 

  28. Rapoport, S.I., Purdon, D., Shetty, H.U., Grange, E., Smith, Q., Jones, C., and Chang, M.C.J. (1997) In Vivo Imaging of Fatty Acid Incorporation into Brain to Examine Signal Transduction and Neuroplasticity Involving Phospholipids, Ann. NY Acad. Sci. 620, 56–74.

    Google Scholar 

  29. Robinson, P.J., Noronha, J., DeGeorge, J.J., Freed, L.M., Nariai, T., and Rapoport, S.I. (1992) A Quantitative Method for Measuring Regional in vivo Fatty Acid Incorporation into and Turnover Within Brain Phospholipids: Review and Critical Analysis, Brain Res. Rev. 17, 187–214.

    Article  PubMed  CAS  Google Scholar 

  30. Chang, M.C.J., Bell, J.M., Purdon, A.D., Chikhale, E.G., and Grange, E. (1999) Dynamics of Docosahexaenoic Acid Metabolism in the Central Nervous System: Lack of Effect of Chronic Lithium Treatment, Neurochem. Res. 24, 399–406.

    Article  PubMed  CAS  Google Scholar 

  31. Gnaedinger, J.M., Miller, J.C., Latker, C.H., and Rapoport, S.I. (1988) Cerebral Metabolism of Plasma [14C]Palmitate in Awake Adult Rat: Subcellular Localization, Neurochem. Res. 13, 21–29.

    Article  PubMed  CAS  Google Scholar 

  32. Nagatsugi, F., Hokazono, J., Sasaki, S., and Maeda, M. (1996) 20-[18F]Fluoroarachidonic Acid: Tissue Biodistribution and Incorporation into Phospholipids, Biol. Pharm. Bull. 19, 1316–1321.

    PubMed  CAS  Google Scholar 

  33. Yamashita, A., Sugiura, T., and Waku, K. (1997) Acyltransferases and Transacylases Involved in Fatty Acid Remodeling of Phospholipids and Metabolism of Bioactive Lipids in Mammalian Cells, J. Biochem. 122, 1–16.

    PubMed  CAS  Google Scholar 

  34. Needleman, P., Wyche, A., Sprecher, H., Elliott, W.J., and Evers, A. (1985) A Unique Cardiac Cytosolic Acyltransferase with Preferential Selectivity for Fatty Acids That Form Cyclooxygenase/Lipooxygenase Metabolites and Reverse Essential Fatty Acid Deficiency, Biochim. Biophys. Acta 836, 267–273.

    PubMed  CAS  Google Scholar 

  35. Hazen, S.L., Stuppy, R.J., and Gross, R.W. (1990) Purification and Characterization of Canine Myocardial Cytosolic Phospholipase A2. A Calcium-Independent Phospholipase with Absolute sn-2 Regiospecificity for Diradyl Glycerophospholipids, J. Biol. Chem. 265, 10622–10630.

    PubMed  CAS  Google Scholar 

  36. Hazen, S.L., and Gross, R.W. (1991) ATP-Dependent Regulation of Rabbit Myocardial Cytosolic Calcium-Independent Phospholipase A2, J. Biol. Chem. 266, 14526–14534.

    PubMed  CAS  Google Scholar 

  37. Hazen, S.L., and Gross, R.W. (1993) The Specific Association of a Phosphofructokinase Isoform with Myocardial Calcium-Independent Phospholiase A2. Implications for the Coordinated Regulation of Phospholipolysis and Glycolysis, J. Biol. Chem. 268, 9892–9900.

    PubMed  CAS  Google Scholar 

  38. Das, D.K., Maulik, N., and Jones, R.M. (1994) Gas Chromatography-Mass Spectroscopic Detection of Plasmalogen Phospholipids in Mammalian Heart, in Lipid Chromatographic Analysis (Shibamoto, T., ed.) pp. 317–345, Marcel Dekker, Inc., New York.

    Google Scholar 

  39. Scherrer, L.A., and Gross, R.W. (1989) Subcellular Distribution, Molecular Dynamics and Catabolism of Plasmalogens in Myocardium, Mol. Cell Biochem. 88, 97–105.

    Article  PubMed  CAS  Google Scholar 

  40. Ford, D.A., and Gross, R.W. (1994) The Discordant Rates of sn-1 Aliphatic Chain and Polar Head Group Incorporation into Plasmalogen Molecular Species Demonstrate the Fundamental Importance of Polar Head Remodeling in Plasmalogen Metabolism in Rabbit Myocardium, Biochemistry 33, 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  41. Geltman, E.M. (1994) Assessment of Myocardial Fatty Acid Metabolism with 1-11C-Palmitate, J. Nucl. Cardiol. 1, S15-S22.

    Article  PubMed  CAS  Google Scholar 

  42. Lerch, R.A., Ambos, H.D., Bergmann, S.R., Welch, M.J., Ter-Pogossian, M.M., and Sobel, B.E. (1981) Localization of Viable, Ischemic Myocardium by Positron-Emission Tomography with 11C-Palmitate, Circulation 64, 689–699.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Murphy.

About this article

Cite this article

Murphy, E.J., Rosenberger, T.A., Patrick, C.B. et al. Intravenously injected [1-14C]arachidonic acid targets phospholipids, and [1-14C]palmitic acid targets neutral lipids in hearts of awake rats. Lipids 35, 891–898 (2000). https://doi.org/10.1007/S11745-000-0598-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S11745-000-0598-7

Keywords

Navigation