Skip to main content
Log in

Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids

  • Published:
Lipids

Abstract

A mutant of the red microalga Porphyridium cruentum was selected on the basis of impaired growth at suboptimal temperatures (15 vs. 25°C). Fatty acid and lipid analyses revealed diminished proportions of eicosapentaenoic acid (from 41 to 30%) and of the eukaryotic molecular species (from 38 to 28% of monogalactosyldiacylglycerol (MGDG) and elevated proportion (10 vs. 2%) of triacylglycerols (TAG) in the mutant, as compared with the wild type. Pulse labeling of the wild type cells with radioactive fatty acid precursors indicated an initial incorporation of the fatty acids into phosphatidylcholine (PC) and TAG. Following the pulse, the label of PC and TAG decreased with time (from 25 to 5% of the total dpm in TAG) while that of chloroplastic polar lipids, mainly MGDG, continued to increase. In the mutant, however, the labeling of TAG after the pulse was higher (30% of the total dpm) than that of the wild type and decreased only slightly to 20%. This may indicate that in P. cruentum, TAG can contribute to the biosynthesis of eukaryotic species of MGDG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

C n :

fatty acid, fatty acid with n carbon atoms

DAG:

diacylglycerol

DAGAT:

diacylglycerol acyltransferase

DGDG:

digalactosyldiacylglycerol

EPA:

elcosapentaenoic acid (20∶5n−3)

MGDG:

monogalactosyldiacylglycerol

PC:

phosphatidylcholine

PUFA:

polyunsaturated fatty acid

TAG:

triacylglycerol

WT:

wild type

X:Y:

a fatty acyl group containing X carbon atoms and Y double bonds (cis). Pairs of numbers representing the fatty acids, when separated by a slash, designate the components in the sn-1 and sn-2 positions, respectively, of the molecular species

References

  1. Browse, J., and Somerville, C.R. (1991) Glycerolipid Synthesis: Biochemistry and Regulation, Annu. Rev. Plant Mol. Biol. 42, 467–506.

    Article  CAS  Google Scholar 

  2. Norman, H.A., Smith, L.A., Lynch, D.V., and Thompson, G.A. (1985) Effects of Low-Temperature Stress on the Metabolism of Phosphatidylglycerol Molecular Species in Dunaliella salina, Arch. Biochem. Biophys. 24, 157–167.

    Article  Google Scholar 

  3. Arao, T., Sakaki, T., and Yamada, M. (1994) Biosynthesis of Polyunsaturated Lipids in the Diatom, Phaeodactylum tricornutum, Phytochemistry 36, 629–635.

    Article  CAS  Google Scholar 

  4. Arao, T., and Yamada, M. (1994) Biosynthesis of Polyunsaturated Fatty Acids in the Marine Diatom, Phaeodactylum tricornutum, Phytochemistry 35, 1177–1181.

    Article  CAS  Google Scholar 

  5. Cohen, Z., Norman, H.A., and Heimer, Y.M. (1995) Microalgae as a Source of Omega-3 Fatty Acids, in Plants in Human Nutrition, World Review of Nutrition and Dietetics (Simopoulos A.P., ed.) Vol. 77, pp. 1–31, Karger, Basel.

    Google Scholar 

  6. Simopoulos, A.P. (1991) ω-3 Fatty Acids in Health and Disease and in Growth and Development, Am. J. Clin. Nutr. 54, 438–463.

    PubMed  CAS  Google Scholar 

  7. Shiran, D., Khozin, I., Heimer, Y.M., and Cohen, Z. (1996) Elucidation of the Biosynthesis of EPA in Porphyridium cruentum. I: The Use of Externally Supplied Fatty Acids, Lipids 31, 1277–1282.

    PubMed  CAS  Google Scholar 

  8. Khozin, I., Adlerstein, D., Bigogno, C., Heimer, Y.M., and Cohen, Z. (1997) Elucidation of the Biosynthesis of EPA in the Microalga Porphyridium cruentum II: Radiolabeling Studies, Plant Physiol. 114, 223–230.

    PubMed  CAS  Google Scholar 

  9. Schneider, J.C., Livne, A., Sukenik, A., and Roessler, P.G. (1995) A Mutant of Nannochloropsis Deficient in Eicosapentaenoic Acid Production, Phytochemistry 40, 807–814.

    Article  CAS  Google Scholar 

  10. Wada, H., Gombos, Z., Sakamoto, T., and Murata, N. (1992) Genetic Manipulation of the Extent of Desaturation of Fatty Acids in Membrane Lipids in the Cyanobacterium Synechocystis PCC6803, Plant Cell Physiol. 33, 535–540.

    CAS  Google Scholar 

  11. Cohen, Z., Vonshak, A., and Richmond, A. (1988) Effect of Environmental Conditions of Fatty Acid Composition of the Red Alga Porphyridium cruentum: Correlation to Growth Rate, J. Phycol. 24, 328–332.

    CAS  Google Scholar 

  12. Wada, H., and Murata, N. (1989) Synechocystic PCC 6803, Mutants Defective in Desaturation of Fatty Acids, Plant Cell Physiol. 30, 971–978.

    CAS  Google Scholar 

  13. Jones, R.E., Speer, L., and Kury, W. (1983) Studies on the Growth of the Red Alga Porphyridium cruentum, Physiol. Plant. 16, 636–643.

    Article  Google Scholar 

  14. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method for Total Lipid Extraction and Purification, Can. J. Biochem. 37, 911–917.

    Article  PubMed  CAS  Google Scholar 

  15. Lynch, D.V., Gundersen, R.E., and Thompson, G.A. (1983) Separation of Galactolipid Molecular Species by High Performance Liquid Chromatography, Plant Physiol. 72, 903–905.

    Article  PubMed  CAS  Google Scholar 

  16. Cohen, Z. (1990) The Production Potential of Eicosapentaenoic Acid and Arachidonic Acid of the Red Alga Porphyridium cruentum, J. Am. Oil Chem. Soc. 67, 916–920.

    CAS  Google Scholar 

  17. Adlerstein, D., Khozin, I., Bigogno, C., and Cohen, Z. (1997) The Effect of Growth Temperature and Culture Density on the Molecular Species Composition of the Galactolipids in the Red Microalga Porphyridium cruentum (Rhodophyta), J. Phycol. 33, 975–979.

    Article  CAS  Google Scholar 

  18. Miquel, M., James, D., Dooner, J., and Browse, J. (1993) Arabidopsis Requires Polyunsaturated Lipids for Low-temperature Survival, Proc. Natl. Acad. Sci. U.S.A. 90, 6208–6212.

    Article  PubMed  CAS  Google Scholar 

  19. Wada, H., Gombos, Z., and Murata, N. (1990) Enhancement of Chilling Tolerance of a Cyanobacterium by Genetic Manipulation of Fatty Acid Desaturation, Nature 347, 200–203.

    Article  PubMed  CAS  Google Scholar 

  20. Garces, R., Sarmiento, C., and Mancha, M. (1994) Oleate from Triacylglycerols Is Desaturated in Cold-induced Developing Sunflower (Helianthus annuus L.) Seeds, Planta 193, 473–477.

    Article  CAS  Google Scholar 

  21. Stobart, K., Mancha, M., Lenman, M., Dahlqvist, A., and Stymne, S. (1997) Triacylglycerols are Synthesized and Utilized by Transacylation Reactions in Microsomal Preparations of Developing Safflower (Carthamus tinctorius L.) Seeds, Planta 203, 58–66.

    Article  CAS  Google Scholar 

  22. Henderson, R.J., Hodgson, P., and Harwood, J.L. (1990) Differential Effects of the Substituted Pyridazinone Herbicide Sandoz 9785 on Lipid Composition and Biosynthesis in Photosynthetic and Non-photosynthetic Marine Microalgae. II. Fatty Acid Composition, J. Exp. Bot. 41, 729–736.

    CAS  Google Scholar 

  23. Sukenik, A., and Carmeli, Y. (1990) Lipid Synthesis and Fatty Acid Composition in Nannochloropsis sp. (Eustimatophyceae) Grown in a Light-Dark Cycle, J. Phyc. 26, 464–469.

    Google Scholar 

  24. Cohen, Z. (1994) Production Potential of Eicosapentaenoic Acid by Monodus subterraneus, J. Am. Oil Chem. Soc. 71, 941–945.

    CAS  Google Scholar 

  25. Yongmanitchai, W., and Ward, O.P. (1991) Growth of and Omega-3 Fatty Acid Production by Phaeodactylum tricornutum Under Different Culture Conditions, Appl. Environ. Microbiol. 57, 419–425.

    PubMed  CAS  Google Scholar 

  26. Henderson, R.J., and McKinley, E.E. (1992) Radiolabeling Studies of Lipids in the Marine Cryptomonad Chroomonas salina in Relation to the Fatty Acid Desaturation, Plant Cell Physiol. 33, 395–406.

    CAS  Google Scholar 

  27. Makewicz, A., Gribi, C., and Eichenberger, W. (1997) Lipids of Ectocarpus fasciculatus (Phaeophyceae). Incorporation of [1-14C]Oleate and the Role of TAG and MGDG in Lipid Metabolism, Plant Cell Physiol. 38, 952–60.

    CAS  Google Scholar 

  28. Eichenberger, W., and Gribi, C. (1997) Lipids of Pavlova lutheri: Cellular Site and Metabolic Role of DGCC, Phytochemistry 45, 1561–1567.

    Article  CAS  Google Scholar 

  29. Falk-Peterson, S., Sargent, J.R., Hegseth, E.N., Hop, H., and Oklodkov, Y.B. (1998) Lipid and Fatty Acid Composition in Ice Algae and Phytoplankton from the Marginal Ice Zone in the Barents Sea, Polar Biology 20, 41–47.

    Article  Google Scholar 

  30. Pettitt, T.R., Jones, A.L., and harwood, J.L. (1989) Lipids of the Marine Red Algae, Chondrus crispus and Polysiphonia lanosa, Phytochemistry 28, 2053–2058.

    Article  CAS  Google Scholar 

  31. Araki, S., Sakurai, T., Oohusa, T., Kayama, M., and Nizsizawa, K. (1990) Content of Arachidonic and Eicosapentaenoic Acids in Polar Lipid from Gracilaria (Gracilariales, Rhodophyta), Hydrobiologia 204/205, 513–519.

    Article  Google Scholar 

  32. Browse, J., and Somerville, C.R. (1994) Glycerolipids, in Arabidopsis (Meyerowitz, E.M., and Sormerville, C.R., eds.) pp. 881–912, Cold Spring Harbor Laboratory Press, Plainview.

    Google Scholar 

  33. Klyachko-Gurvich, G., Tsoglin, L.N., Doucha, J., Kopetskii, J., Shebalina, B.I., and Semenenko, V.E. (1999) Desaturation of Fatty Acids as an Adaptive Response to Shifts in Light Intensity, Physiol. Plant. 107, 240–249.

    Article  CAS  Google Scholar 

  34. Wanner, G., and Kost, H.P. (1984) “Membrane Storage” of the Red Alga Porphyridium cruentum During Nitrate and Sulfate Starvation, Z. Pflanzenphysiol. 113, 251–262.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Cohen.

About this article

Cite this article

Khozin-Goldberg, I., Yu, H.Z., Adlerstein, D. et al. Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids. Lipids 35, 881–889 (2000). https://doi.org/10.1007/S11745-000-0597-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S11745-000-0597-8

Keywords

Navigation