Skip to main content

Advertisement

Log in

Stoichiometric mechanisms of Dicranopteris dichotoma growth and resistance to nutrient limitation in the Zhuxi watershed in the red soil hilly region of China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Little is known about why Dicranopteris dichotoma can succeed in a nutrient-limited environment. This study investigated the stoichiometric mechanisms of D. dichotoma growth and resistance to nutrient limitation in the red soil hilly region of China.

Methods

We examined D. dichotoma growth, soil nutrients, and stoichiometric variables in the early ecological restoration stage and across the ecological restoration chronosequence.

Results

Most of the D. dichotoma growth factors rapidly increased with the arbor-bush-herb mixed plantation and maintained a high level. Soil P was a main factor influencing D. dichotoma growth across the ecological restoration chronosequence, whereas its role is unclear in the early ecological restoration stage. D. dichotoma demanded low C and P and possessed high N and P utilization rates, and N and P distribution was ranked as leaf > root and rhizome > stem. The stoichiometry of D. dichotoma is a relatively weak stoichiometric homeostasis across the whole ecological restoration chronosequence with relatively strong stoichiometric homeostasis in the early ecological restoration stage.

Conclusions

Stoichiometry can be used to explore the underlying mechanisms that allow D. dichotoma to succeed to a great extent. D. dichotoma can play an important role in ecological restoration, and microtopography, especially valleys, should be created to trigger the succession of D. dichotoma in the red soil hilly region of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bai LY, Chen ZQ, Chen ZB (2014) Soil fertility self-development under ecological restoration in the Zhuxi watershed in the red soil hilly region of China. J Mt Sci 11:1231–1241

    Article  Google Scholar 

  • Bui EN, Henderson BL (2013) C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil 373:553–568. doi:10.1007/s11104-013-1823-9

    Article  CAS  Google Scholar 

  • Campo J, Gallardo JF (2012) Comparison of P and cation cycling in two contrasting seasonally dry forest ecosystems. Ann For Sci 69:887–894

    Article  Google Scholar 

  • Cao XZ, Zhang GS (1995) Formation and countermeasures of the vulnerable eco-environment of red soil hilly region. Rural Eco-environ 11:45–48

    Google Scholar 

  • Chen ZB, Zhu HJ (2006) The physical and chemical characteristics of soil under the different control measures of soil and water loss. J Fujian Normal Univ (Nat Sci Ed) 22:5–9, 29

    CAS  Google Scholar 

  • Chen J, Zhang R, Hou Y, Ma L, Ding L, Long R, Shang Z (2013) Relationships between species diversity and C, N and P ecological stoichiometry in plant communities of sub-alpine meadow. Chin J Plant Ecol 37:979–987

  • Courtwright J, Findlay SEG (2011) Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River. Wetlands 31:239–249. doi:10.1007/s13157-011-0156-9

    Article  Google Scholar 

  • Cuassolo F, Balseiro E, Modenutti B (2012) Alien vs. native plants in a Patagonian wetland: elemental ratios and ecosystem stoichiometric impacts. Biol Invasions 14:179–189

    Article  Google Scholar 

  • Du YX, Pan GX, Li LQ, Hu ZL, Wang XZ (2011) Leaf N/P ratio and nutrient reuse between dominant species and stands: predicting phosphorus deficiencies in Karst ecosystems, southwestern China. Environ Earth Sci 64:299–309

    Article  CAS  Google Scholar 

  • Duan WB, Wang J, Li Y (2009) Microenvironmental heterogeneity of physical soil properties in a broad-leaved Pinus koraiensis forest gap. Front For China 4:38–45. doi:10.1007/s11461-009-0018-2

    Article  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • González AL, Fariña JM, Pinto R, Pérez C, Weathers KC, Armesto JJ, Marquet PA (2011) Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile. Oecologia 167:835–845

    Article  PubMed  Google Scholar 

  • Guan DS (2001) Dynamics of carbon in the grassland, fernland and shrubland of Hong Kong. Acta Ecol Sin 21:440–445

    Google Scholar 

  • Guisan A, Weiss SB, Weiss AD (1999) GLM versus CCA spatial modeling of plant species distribution. Plant Ecol 143:107–122

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • Han X, Sistla SA, Zhang Y, Lü XT, Han XG (2014) Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant Soil 382:175–187

    Article  CAS  Google Scholar 

  • He JS, Wang L, Flynn DF, Wang XP, Ma WH, Fang JY (2008) Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–310

    Article  PubMed  Google Scholar 

  • Koerselman W, Meuleman AF (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Kooijman SALM (1995) The stoichiometry of animal energetics. J Theor Biol 177:139–149

    Article  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31. doi:10.1007/s11104-010-0444-9

    Article  CAS  Google Scholar 

  • Lehmann A, Leathwick JR, Overton J (2002) Assessing New Zealand fern diversity from spatial predictions of species assemblages. Biodivers Conserv 11:2217–2238. doi:10.1023/A:1021398729516

  • Lerman A, Mackenzie FT, Ver LM (2004) Coupling of the perturbed C–N–P cycles in industrial time. Aquat Geochem 10:3–32

    Article  CAS  Google Scholar 

  • Leuzinger S, Hättenschwiler S (2013) Beyond global change: lessons from 25 years of CO2 research. Oecologia 171:639–651

    Article  PubMed  Google Scholar 

  • Li XF, Chen ZB, Chen ZQ, Zheng LD, Zhang XY, Li RL (2013) Response of Disranopteris dichotoma growth to environmental factors in eroded red-soil region of southern China. Bull Soil Water Conserv 33:33–37

    Google Scholar 

  • Liu GS (1996) Soil physical and chemical analysis and description of soil profiles. Standards Press of China, Beijing

    Google Scholar 

  • Lü XT, Freschet GT, Kazakou E, Wang ZW, Zhou LS, Han XG (2014) Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence. Plant Soil 387:69–79

    Article  Google Scholar 

  • Luo LP, Ge G, Tao Y, Ye J (1999) The allelopathy of the extract from Dicranopteris pedata on several weeds and crops. Chin Bull Bot 16:591–597

    Google Scholar 

  • McCullough CD, Van Etten EJB (2011) Ecological restoration of novel lake districts: new approaches for new landscapes. Mine Water Environ 30:312–319. doi:10.1007/s10230-011-0161-5

    Article  Google Scholar 

  • Moser K, Ahn C, Noe G (2007) Characterization of microtopography and its influence on vegetation patterns in created wetlands. Wetlands 27:1081–1097. doi:10.1672/0277-5212(2007)27[1081:COMAII]2.0.CO;2

    Article  Google Scholar 

  • Naddafi R, Goedkoop W, Grandin U, Eklöv P (2012) Variation in tissue stoichiometry and condition index of zebra mussels in invaded Swedish lakes. Biol Invasions 14:2117–2131

    Article  Google Scholar 

  • Pan FJ, Zhang W, Liu SJ, Li DJ, Wang KL (2015) Leaf N:P stoichiometry across plant functional groups in the karst region of southwestern China. Trees 29:883–892

    Article  CAS  Google Scholar 

  • Peach MA (2005) Tussock sedge meadows and topographic heterogeneity: ecological patterns underscore the need for experimental approaches to wetland restoration despite the social barriers. University of Wisconsin, Madison

    Google Scholar 

  • Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–751

    Article  CAS  Google Scholar 

  • Price JS, Whitehead GS (2001) Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21:32–40. doi:10.1672/0277-5212(2001)021[0032:DHTFSR]2.0.CO;2

    Article  Google Scholar 

  • Reed SC, Townsend AR, Taylor PG, Cleveland CC (2011) Phosphorus cycling in tropical forests growing on highly weathered soils. In: Bünemann EK, Oberson A, Frossard E (eds) Soil Biology, vol 26. Phosphorus in Action, Springer-Verlag, Heidelberg, pp 339–369

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101:11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardans J, Rivas-Ubach A, Penuelas J (2012) The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39

    Article  Google Scholar 

  • Song ML, Chai Q, Li XZ, Yao X, Li CJ, Christensen MJ, Nan ZB (2014a) An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 387:153–165

    Article  Google Scholar 

  • Song ZL, Liu HY, Zhao FJ, Xu CY (2014b) Ecological stoichiometry of N:P:Si in China’s grasslands. Plant Soil 380:165–179

    Article  CAS  Google Scholar 

  • Su YC (2005) Extraction of Dicranopteris dichotoma polysaccharides and its antibiotic activities. Subtropical Plant Sci 34:43–45

    Google Scholar 

  • Sun X, Kang HZ, Du HM, Hu HB, Zhou JB, Hou JL, Zhou X, Liu CJ (2012) Stoichiometric traits of oriental oak (Quercus variabilis) acorns and their variations in relation to environmental variables across temperate to subtropical China. Ecol Res 27:765–773

    Article  Google Scholar 

  • Tischer A, Werisch M, Döbbelin F, Camenzind T, Rillig MC, Potthast K, Hamer U (2015) Above- and belowground linkages of a nitrogen and phosphorus co-limited tropical mountain pasture system—responses to nutrient enrichment. Plant Soil 391:333–352

    Article  CAS  Google Scholar 

  • Venterink HO, Kardel I, Kotowski W, Peeters W, Wassen MJ (2009) Long-term effects of drainage and hay-removal on nutrient dynamics and limitation in the Biebrza mires, Poland. Biogeochemistry 93:235–252

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15. doi:10.1890/08-0127.1

    Article  PubMed  Google Scholar 

  • von Oheimb G, Power SA, Falk K, Friedrich U, Mohamed A, Krug A, Boschatzke N, Härdtle W (2010) N:P ratio and the nature of nutrient limitation in Calluna-dominated heathlands. Ecosystems 13:317–327

    Article  CAS  Google Scholar 

  • Wang M, Moore TR (2014) Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems 17:673–684

    Article  Google Scholar 

  • Wang XP, Shan XQ, Zhang SZ, Wen B (2003) Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma. Anal Bioanal Chem 376:913–917. doi:10.1007/s00216-003-2014-y

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ji H, Bai K, Li L, Kuang T (2006) Photosystem 2 activities of hyper-accumulator Dicranopteris dichotoma Bernh from a light rare earth elements mine. Photosynthetica 44:202–207

    Article  CAS  Google Scholar 

  • Wang CC, Yang YS, Zhang YQ (2011a) Economic development, rural livelihoods, and ecological restoration: evidence from China. Ambio 40:78–87. doi:10.1007/s13280-010-0093-5

    Article  PubMed  Google Scholar 

  • Wang J, Wang S, Li R, Yan J, Sha L, Han S (2011b) C:N:P stoichiometric characteristics of four forest types’ dominant tree species in China. Acta Phytoecol Sin 35:587–595

    Google Scholar 

  • Wyant JG, Meganck RA, Ham SH (1995) A planning and decision-making framework for ecological restoration. Environ Manag 19:789–796. doi:10.1007/BF02471932

    Article  Google Scholar 

  • Yang L, Wang J, Huang YH, Chen YQ, Wen ML (2014) Litterfall interception of understory fern Dicranopteris dichotoma in plantations of south China. Trop Geogr 34:165–170

    Google Scholar 

  • Yu Q, Elser JJ, He NP, Wu HH, Chen QS, Zhang GM, Han XG (2011) Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 166:1–10

    Article  PubMed  Google Scholar 

  • Yue H, Zhong BL, Chen ZB, Ruan FS (2014) Intrusion of Dicranopteris dichotoma and ecological reconstruction of eroded slope. Subtrop Soil Water Conserv 26:46–48

    Google Scholar 

  • Zhang LW, Mi XC, Shao HB, Ma KP (2011) Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant Soil 347:211–220. doi:10.1007/s11104-011-0839-2

    Article  CAS  Google Scholar 

  • Zhao QQ, Bai JH, Liu Q, Lu QQ, Gao ZQ, Wang JJ (2015) Spatial and seasonal variations of soil carbon and nitrogen content and stock in a tidal salt marsh with Tamarix chinensis, China. Wetlands. doi:10.1007/s13157-015-0647-1, Published online: 15 March 2015

    Google Scholar 

  • Zheng SX, Shangguan ZP (2007) Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees 21:357–370

    Article  CAS  Google Scholar 

  • Zhu GC, Xi JB, Li XX (2011) Review on study and application of grass species with soil and water conservation function in China. Sichuan Caoyuan 6:36–39

    Google Scholar 

  • Zou AP, Chen ZB, Chen LH (2009) Spatio-temporal variation of eroded landscape in typical small watershed in the hilly region of red soil: a case study of Zhuxihe small watershed in Changting County, Fujian Province. Sci Soil Water Conserv 7:93–99. doi:10.3969/j.issn.1672-3007.2009.02.016

    Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (41371512, 41171232)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Chen.

Additional information

Responsible Editor: Jeffrey Walck .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Chen, Z., Yan, X. et al. Stoichiometric mechanisms of Dicranopteris dichotoma growth and resistance to nutrient limitation in the Zhuxi watershed in the red soil hilly region of China. Plant Soil 398, 367–379 (2016). https://doi.org/10.1007/s11104-015-2670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2670-7

Keywords

Navigation