Skip to main content
Log in

Effects of salt stress on basic processes of photosynthesis

  • Review
  • Published:
Photosynthetica

Abstract

Salt stress causes decrease in plant growth and productivity by disrupting physiological processes, especially photosynthesis. The accumulation of intracellular sodium ions at salt stress changes the ratio of K : Na, which seems to affect the bioenergetic processes of photosynthesis. Both multiple inhibitory effects of salt stress on photosynthesis and possible salt stress tolerance mechanisms in cyanobacteria and plants are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah, Z., Ahmed, R.: Effect of pre and post kinetin treatment on salt tolerance of different potato cultivars growing on saline soils.–J. Agron. Crop Sci. 165: 94–102, 1990.

    Google Scholar 

  • Allakhverdiev, S.I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, N., Kanesaki, Y., Murata, N.: Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis.–Plant Physiol. 130: 1443–1453, 2002.

    Google Scholar 

  • Allakhverdiev, S.I., Nishiyama, Y., Suzuki, I., Tasaka, Y., Murata, N.: Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress.–Proc. nat. Acad. Sci. U.S.A. 96: 5862–5867, 1999.

    Google Scholar 

  • Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., Inaba, M., Murata, N.: Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp.–Plant Physiol. 123: 1047–1056, 2000.

    Google Scholar 

  • Apte, S.K., Thomas, J.: Impairment of photosynthesis by sodium deficiency and its relationship to nitrogen fixation in the cyanobacterium Anabaena torulosa.–FEMS Microbiol. Lett. 16: 153–157, 1983.

    Google Scholar 

  • Ashraf, M., Shahbaz, M.: Assessment of genotypic variation in salt tolerance of early CIMMYT hexaploid wheat germplasm using photosynthetic capacity and water relations as selection criteria.–Photosynthetica 41: 273–280, 2003.

    Google Scholar 

  • Ball, M.C., Chaw, W.S., Anderson, J.M.: Salinity induced potassium deficiency causes loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide.–Aust. J. Plant Physiol. 14: 351–361, 1987.

    Google Scholar 

  • Batterton, J.C., Van Baalen, C.: Growth response of blue-green algae to sodium chloride concentration.–Arch. Mikrobiol. 14: 351–361, 1971.

    Google Scholar 

  • Belkhodja, R., Morales, F., Abadia, A., Gomez-Aparisi, J., Abadia, J.: Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.).–Plant Physiol. 104: 667–673, 1994.

    Google Scholar 

  • Booth, W.A., Beardall, J.: Effect of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant algae Dunaliella salina (Chlorophyta).–Phycologia 30: 220–225, 1991.

    Google Scholar 

  • Boyer, J.S.: Water deficits and photosynthesis.–In: Kozlowsky, T.T. (ed.): Water Deficit and Plant Growth. Vol. IV. Pp. 153–190. Academic Press, New York–San Francisco–London 1976.

    Google Scholar 

  • Brown, I.I., Fadeyev, S.I., Gerasimenko, L.M., Kirik, I.I., Pushenko, M., Severina, I.I.: Sodium ions are necessary for growth and energy transduction in the marine cyanobacterium Oscillatoria brevis.–Arch. Microbiol. 153: 409–411, 1990.

    Google Scholar 

  • Brugnoli, E., Björkman, O.: Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and no-stomatal components of photosynthesis and dissipation of excess light energy.–Planta 187: 335–347, 1992.

    Article  CAS  Google Scholar 

  • Canaani, O.: The role of cyclic electron flow around photosystem I and excitation energy distribution between the photosystems upon acclimation to high ionic strength in Dunaliella salina.– Photochem. Photobiol. 52: 591–599, 1990.

    Google Scholar 

  • Downton, W.J.S.: Photosynthesis in salt-stressed grapevines.–Aust. J. Plant. Physiol. 4: 183–192, 1977.

    Google Scholar 

  • Downton, W.J.S.: Growth and osmotic relations of the mangrove, Avicennia marina, as influenced by salinity.–Aust. J. Plant Physiol. 9: 519–528, 1982.

    Google Scholar 

  • Echevarría, C., Garcia-Mauriño, S., Alvarez, R., Soler, A., Vidal, J.: Salt stress increases the Ca+2-independent phospho-enolpyruvate carboxylase kinase activity in Sorghum leaves.–Planta 214: 283–287, 2001.

    Google Scholar 

  • Endo, T., Schreiber, U., Asada, K.: Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii.– Plant Cell Physiol. 36: 1253–1258, 1995.

    Google Scholar 

  • Espie, G.S., Miller, A.G., Canvin, D.T.: Characterization of the Na+-requirement in cyanobacterial photosynthesis.–Plant Physiol. 88: 757–763, 1988.

    Google Scholar 

  • Everard, J.D., Gucci, R., Kann, S.C., Flore, J.A., Loescher, W.H.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.). at various levels of root zone salinity.–Plant Physiol. 106: 281–292, 1994.

    Google Scholar 

  • Fernandez-Valiente, E., Avendano, M.C.: Sodium-stimulation of phosphate uptake in the cyanobacterium Anabaena PCC 7119.–Plant Cell Physiol. 34: 201–207, 1993.

    Google Scholar 

  • Fork, D.C., Herbert, S.K.: Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria.–Photosynth. Res. 36: 149–168, 1993.

    Google Scholar 

  • García-Mauriño, S., Monreal, J.A., Alvarez, R., Vidal, J., Echevarría, C.: Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation.–Planta 216: 648–655, 2003.

    Google Scholar 

  • Gilmour, D.J., Hipkins, M.F., Webber, A.N., Baker, N.R., Boney, A.D.: The effect of ionic stress on photosynthesis in Dunaliella tertiolecta. Chlorophyll fluorescence kinetics and spectral characteristics.–Planta 163: 250–256, 1985.

    Google Scholar 

  • Golldack, D., Dietz, K.J.: Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific.–Plant Physiol. 125: 1643–1654, 2001.

    Google Scholar 

  • Gorham, J., Wyn Jones, R.G., McDonnel, E.: Some mechanisms of salt tolerance in crop plants.–Plant Soil 89: 15–40, 1985.

    Google Scholar 

  • Grossman, A.R., Schaefer, M.R., Chiang, G.G., Collier, J.L.: The phycobilisome, a light-harvesting complex responsive to environmental conditions.–Microbiol. Rev. 57: 725–749, 1993.

    Google Scholar 

  • Gupta, N.K., Meena, S.K., Gupta, S., Khandelwal, S.K.: Gas exchange, membrane permeability, and ion uptake in two species of Indian jujube differing in salt tolerance.–Photosynthetica 40: 535–539, 2002.

    Google Scholar 

  • Hajar, A.S., Zidan, M.A., Al-Zahruni, H.S.: Effect of salinity stress on the germination, growth, and some physiological activities of black cumin (Nigella sativa L.).–Arab Gulf J. Sci. Res. 14: 445–454, 1996.

    Google Scholar 

  • Hamada, A.M., El-Enany, A.E.: Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants.–Biol. Plant. 36: 75–81, 1994.

    Google Scholar 

  • Hamilton, C.A., Taylor, G.J., Good, A.G.: Vacuolar H(+)-ATPase, but not mitochondrial F(1) F(0)-ATPase, is required for NaCl tolerance in Saccharomyces cerevisiae.– FEMS Microbiol. Lett. 208: 227, 2002.

    Google Scholar 

  • Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., Bohnert, H.J.: Plant cellular and molecular response to high salinity.–Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463–499, 2000.

    Google Scholar 

  • Hayashi, H., Murata, N.: Genetically engineered enhancement of salt tolerance in higher plants.–In: Satoh, K., Murata, N. (ed.): Stress Responses of Photosynthetic Organisms: Molecular Mechanisms and Molecular Regulation. Pp. 133–148. Elsevier, Amsterdam–Lausanne–New York–Oxford–Shannon–Singapore–Tokyo 1998.

    Google Scholar 

  • Hibino, T., Lee, B.H., Rai, A.K., Ishikawa, H., Kojima, H., Tawada, M., Shimoyama, H., Takabe, T.: Salt enhances photosystem I content and cyclic electron flow via NAD(P)H dehydrogenase in the halotolerant cyanobacterium Aphanothece halophytica.– Aust. J. Plant Physiol. 23: 321–330, 1996.

    Google Scholar 

  • Hsiao, T.C.: Additive and interactive effects of soil salinity and water regimes on crop-growth responses and osmoregulation.–In: Letey, J. (ed.): Soil and Plant Interactions with Salinity. Agr. Exp. Stat. Univ. Calif. Spec. Publ. 3315: 18–22, 1986.

  • Jain, M., Mathur, G., Koul, S., Sarin, N.B.: Amelioration effects of proline on salt stress induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.).–Plant Cell Rep. 20: 463, 2001.

    Google Scholar 

  • Jeanjean, R., Matthijs, H.C.P., Onana, B., Havaux, M., Joset, F.: Exposure of the cyanobacterium Synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis.–Plant Cell Physiol. 34: 1073–1079, 1993.

    Google Scholar 

  • Joset, F., Jeanjean, R., Hagemann, M.: Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events.–Physiol. Plant. 96: 738–744, 1996.

    Google Scholar 

  • Kao, W.-Y., Tsai, T.-T., Shih, C.-N.: Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments.–Photosynthetica 41: 415–419, 2003.

    Google Scholar 

  • Kirst, G.O.: Salinity tolerance of eukaryotic marine algae.–Annu. Rev. Plant Physiol. Plant mol. Biol. 40: 21–53, 1989.

    Google Scholar 

  • Krulwich, T.A.: Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics.–Mol. Microbiol. 15: 403–410, 1995.

    Google Scholar 

  • Krulwich, T.A., Guffanti, A.A., Bornstein, R.F., Hoffstein, J.: A sodium requirement for growth, solute transport, and pH homeostasis in Bacillus firmus RAB.–J. biol. Chem. 257: 1885–1889, 1982.

    Google Scholar 

  • Kulshreshtha, S., Mishra, D.P., Gupta, R.K.: Changes in contents of chlorophyll, proteins and lipids in whole chloroplasts and chloroplast membrane fractions at different water potential in drought resistant and sensitive genotypes of wheat.–Photosynthetica 21: 65–70, 1987.

    Google Scholar 

  • Kuwabara, T., Murata, N.: Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts.–Plant Cell Physiol. 23: 533–539, 1982.

    Google Scholar 

  • Lapina, L.P., Popov, B.A.: [Effect of sodium chloride on photosynthetic apparatus of tomatoes.]–Fiziol. Rast. 17: 580–584, 1970. [In R.]

    Google Scholar 

  • Lu, C., Torzilo, G., Vonshak, A.: Kinetic response of photosystem II photochemistry in cyanobacterium Spirulina platensis to high salinity is characterized by two distinct phases.–Aust. J. Plant Physiol. 26: 283–292, 1999.

    Google Scholar 

  • Lu, C., Vonshak, A.: Characterization of PS II photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis.–New Phytol. 141: 231–239, 1999.

    Google Scholar 

  • Lu, C., Vonshak, A.: Effects of salinity on photosystem II function in cyanobacterial Spirulina platensis cells.–Physiol. Plant. 114: 405–413, 2002.

    Google Scholar 

  • Maeso, E.S., Piñas, F.F., Gonzalez, M.G., Valiente, E.F.: Sodium requirement for photosynthesis and its relationship with dinitrogen fixation and the external CO2 concentration in cyanobacteria.–Plant Physiol. 85: 585–587, 1987.

    Google Scholar 

  • Marschner, H.: Mineral Nutrition in Higher Plants.–Pp. 477–542. Academic Press, London 1986.

    Google Scholar 

  • Marschner, H.: Mineral Nutrition of Higher Plants. 2nd Ed.–Academic Press, San Diego 1995.

    Google Scholar 

  • Masojídek, J., Hall, D.O.: Salinity and drought stress are amplified by high irradiance in sorghum.–Photosynthetica 27: 159–171, 1992.

    CAS  Google Scholar 

  • Miller, A.G., Turpin, D.H., Canvin, D.T.: Na+ requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis.– J. Bacteriol. 159: 100–106, 1984.

    Google Scholar 

  • Mishra, S.K., Subrahmanyam, D., Singhal, G.S.: Inter-relationship between salt and light stress on the primary processes of photosynthesis.–J. Plant Physiol. 138: 92–96, 1991.

    Google Scholar 

  • Misra, A.N., Sahu, S.M., Mishra, M., Ramaswamy, N.K., Desai, T.S.: Sodium chloride salt stress induced changes in thylakoid pigment-protein complexes, photosystem II activity and thermoluminescence glow peaks.–Z. Naturforsch. 54C: 640–644, 1999.

    Google Scholar 

  • Misra, A.N., Sahu, S.M., Mishra, M., Singh, P., Meera, I., Das, N., Kar, M., Sahu, P.: Sodium chloride induced changes in leaf growth and pigment and protein contents in two rice cultivars.–Biol. Plant. 39: 257–262, 1997.

    Google Scholar 

  • Miyao, M., Murata, N.: Partial disintegration and reconstitution of the photosynthetic oxygen evolution system. Binding of 24 kilodalton and 18 kilodalton polypeptides.–Biochim. biophys. Acta 725: 87–93, 1983.

    Google Scholar 

  • Miyao, M., Murata, N.: Calcium ions can be substituted for the 24-kDa polypeptide in photosynthetic oxygen evolution.–FEBS Lett. 168: 118–120, 1984.

    Google Scholar 

  • Moisender, P.H., McClinton, E., Paerl, H.W.: Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria.–Microbiol. Ecol. 43: 432–442, 2002.

    Google Scholar 

  • Morales, F., Abadía, A., Gómez-Aparisi, J., Abadía, J.: Effect of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution.–Physiol. Plant. 86: 419–426, 1992.

    Google Scholar 

  • Munns, R.: Comparative physiology of salt and water stress.–Plant Cell Environ. 25: 239–250, 2002.

    Google Scholar 

  • Muranaka, S., Shimizu, K., Kato, M.: Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance.–Photosynthetica 40: 201–207, 2002a.

    Google Scholar 

  • Muranaka, S., Shimizu, K., Kato, M.: A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake.–Photosynthetica 40: 509–515, 2002b.

    Google Scholar 

  • Murata, N., Mohanty, P.S., Hayashi, H., Papageorgiou, G.C.: Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen evolving complex.–FEBS Lett. 296: 187–189, 1992.

    Google Scholar 

  • Murphy, K.S.T., Durako, M.J.: Physiological effects of short-term salinity changes on Ruppia maritima.–Aquat. Bot. 75: 293–309, 2003.

    Google Scholar 

  • Murthy, S.D.S., Rajagopal, S.: UV-B radiation induced alterations in the bioenergetic processes of photosynthesis.–Photosynthetica 31: 481–487, 1995.

    Google Scholar 

  • Nomura, M., Ishitani, M., Takabe, T., Rai, A.K., Takabe, T.: Synechococcus sp. PCC7942 transformed with Escherichia coli bet genes produces betaine and aquires resistance to salt stress.–Plant Physiol. 107: 703–708, 1995.

    Google Scholar 

  • Parida, A.K., Das, A.B., Mittra, B.: Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts.–Photosynthetica 41: 191–200, 2003.

    Google Scholar 

  • Parks, G.E., Dietrich, M.A., Schumaker, K.S.: Increased vacuolar Na+ /H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl.–J. exp. Bot. 53: 1055–1065, 2002.

    Google Scholar 

  • Peschek, G.A., Obinger, C., Fromwald, S., Bergman, B.: Correlation between immunogold labels and activities of the cytochrome-c-oxidase (aa3-type) in membranes of salt stressed cyanobacteria.–FEMS Microbiol. Lett. 124: 431–437, 1994.

    Google Scholar 

  • Pogoryelov, D., Sudhir, P.-R., Kovacs, L., Gombos, Z., Brown, I., Garab, G.: Sodium dependency of the photosynthetic electron transport in alkaliphilic cyanobacterium Arthrospira platensis.–J. Bioenerg. Biomembr. 35: 427–37, 2003.

    Google Scholar 

  • Ranjbarfordoei, A., Samson, R., Lemeur, R., van Damme, P.: Effects of osmotic drought stress induced by combination of NaCl and polyethylene glycol on leaf water status, photosynthetic gas exchange, and water use efficiency of Pistacia khinjuk and P. mutica.–Photosynthetica 40: 165–169, 2002.

    Google Scholar 

  • Reddy, M.P., Vora, A.B.: Changes in pigment composition. Hill reaction activity and saccharides metabolism in bajra (Penisetum typhoides S & H) leaves under NaCl salinity.–Photosynthetica 20: 50–55, 1986.

    Google Scholar 

  • Rhoades, J.D., Loveday, J.: Salinity in irrigated agriculture.–In: Steward, B.A., Neilsen, D.R. (ed.): Irrigation of Agricultural Crops. Pp. 1089–1142. ASA, CSSA, SSSA 1990.

  • Robinson, S.P., Downton, W.J.S., Millhouse, J.A.: Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach.–Plant Physiol. 73: 238–242, 1983.

    Google Scholar 

  • Rodriguez, R., Lara, C., Guerrero, M.G.: Nitrate transport in the cyanobacterium Anacystis nidulans R-2: kinetic and energetic aspects.–Biochem. J. 282: 639–643, 1992.

    Google Scholar 

  • Sayed, O.H.: Chlorophyll fluorescence as a tool in cereal crop research.–Photosynthetica 41: 321–330, 2003.

    Google Scholar 

  • Schlesinger, P., Belkin, S., Boussiba, S.: Sodium deprivation under alkaline conditions causes rapid death of the filamentous cyanobacterium Spirulina platensis.–J. Phycol. 32: 608–613, 1996.

    Google Scholar 

  • Schubert, H., Fulda, S., Hagemann, M.: Effects of adaptation to different salt concentrations on photosynthesis and pigmentation of the cyanobacterium Synechocystis sp. PCC 6083.–J. Plant Physiol. 142: 291–295, 1993.

    Google Scholar 

  • Schubert, H., Hagemann, M.: Salt effects on 77K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803.–FEMS Microbiol. Lett. 71: 169–172, 1990.

    Google Scholar 

  • Seemann, J.R., Critchley, C.: Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L.–Planta 164: 151–162, 1985.

    CAS  Google Scholar 

  • Sheekh-El, M.M., Omar, H.H.: Effect of high salt stress on growth and fatty acids content of the unicellular green algae Chlorella vulgaris.–Amer. J. Microbiol. 55: 181–191, 2002.

    Google Scholar 

  • Singh, A.K., Chakravarthy, D., Singh, T.P.K., Singh, H.N.: Evidence for L-proline as a salinity protectant in the cyanobacterium Nostoc muscorum.–Plant Cell Environ. 19: 490–494, 1996.

    Google Scholar 

  • Singh, A.K., Dubey, R.S.: Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl.–Photosynthetica 31: 489–499, 1995.

    Google Scholar 

  • Singh, M.P., Pandey, S.K., Singh, M., Ram, P.C., Singh, B.B.: Photosynthesis, transpiration, stomatal conductance and leaf chlorophyll content in mustard genotypes grown under sodic conditions.–Photosynthetica 24: 623–627, 1990.

    Google Scholar 

  • Sivakumar, P., Sharmila, P., Pardha Saradhi, P.: Proline alleviates salt-stress-induced enhancement in ribulose-1,5-biphosphate oxygenase activity.–Biochem. biophys. Res. Commun. 279: 512–515, 2000.

    Google Scholar 

  • Szabolcs, J.: Soils and salinization.–In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. Pp. 3–11. Marcel Dekker, New York 1994.

    Google Scholar 

  • Takabe, T. Incharoensakdi, A., Arakawa, K., Yokota, S.: CO2 fixation rate and RuBisCO increase in the halotolerant cyanobacterium, Aphanothece halophytica, grown in high salinities.–Plant Physiol. 88: 1120–1124, 1988.

    Google Scholar 

  • Tiwari, B.S., Bose, A., Ghosh, B.: Photosynthesis in rice under a salt stress.–Photosynthetica 34: 303–306, 1997.

    Google Scholar 

  • Trebst, A.: Energy conservation in photosynthetic electron transport of chloroplasts.–Annu. Rev. Plant Physiol. 25: 423–458, 1974.

    Google Scholar 

  • Van Thor, J.J., Jeanjean, R., Havaux, M., Sjollema, K.A., Joset, F., Hellingwerf, K.J., Matthijs, H.C.: Salt shock-inducible photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin:NADP+ reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain.–Biochim. biophys. Acta 1457: 129–144, 2000.

    Google Scholar 

  • Verma, K., Mohanty, P.: Changes of the photosythetic apparatus in Spirulina cyanobacterium by sodium stress.–Z. Naturforsch. 55C: 16–22, 2000a.

    Google Scholar 

  • Verma, K., Mohanty, P.: Alterations in the structure of phycobilisomes of the cyanobacterium, Spirulina platensis in response to enhanced Na+ level.–World J. Microbiol. Biotechnol. 16: 795–798, 2000b.

    Google Scholar 

  • Vonshak, A., Chanawongse, L., Bunnag, B., Tanticharoen, M.: Physiological characterization of Spirulina platensis isolates: response to light and salinity.–Plant Physiol. 14: 161–166, 1995.

    Google Scholar 

  • Vonshak, A., Guy, R., Guy, M.: The response of the filamentous cyanobacterium Spirulina platensis to salt stress.–Arch. Microbiol. 150: 417–420, 1988.

    Google Scholar 

  • Zeng, M.T., Vonshak, A.: Adaptation of Spirulina platensis to salinity stress.–Comp. Biochem. Physiol. A 120: 113–118, 1998.

    Google Scholar 

  • Zhao, J., Brand, J.J.: Sequential effects of sodium depletion on photosystem II in Synechocystis.–Arch. Biochem. Biophys. 264: 657–664, 1988.

    Google Scholar 

  • Zhao, J., Brand, J.J.: Sequential events in the photoinhibition of Synechocystis under sodium stress.–Plant Physiol. 91: 91–100, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.D.S. Murthy.

Additional information

This revised version was published online in March 2005 with corrections to the page numbers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudhir, P., Murthy, S. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42, 481–486 (2004). https://doi.org/10.1007/S11099-005-0001-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S11099-005-0001-6

Additional key words

Navigation