Skip to main content
Log in

Oscillation and burst transition of human cooperation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The oscillation of competing species is especially important for maintaining biodiversity. However, there has long been little evidence of oscillation in two-strategy games. Here we address this problem by studying a social-norm-driven probabilistic migration model where the movement of agents is determined by widespread conformity and self-centered inequity aversion norms. Non-trivially, we observe a tide-like burst as well as burst transition of cooperation that has been rarely discovered in the prisoner’s dilemma before, where the dynamically generated oscillation of competing strategies does not require bridging of any transition states or transition strategies, thus defining a novel oscillating behavior fundamentally different from the conventional cyclic dominance previously found in a game of at least three or more strategies. Although in most cases an explicit adherence to either of the above two norms can sustain cooperation alone, the best outcome always comes from their synergy. This is mainly because conformity norm, as a manifestation of group wisdom, is often a reliable stabilizer of the thriving of cooperation. Besides, it shows that dilemma strength as well as noise plays an important role in altering oscillating behavior. In particular, a slow increase in noise amplitude can cause the burst of cooperation to traverse a closed loop, for instance, from steady to tide-like and back to steady, reflecting an interesting and unusual dynamic property. In addition, there exists a noise threshold beyond which it is possible for an explosion of cooperation. Our results highlight the importance of social norms in the burst transition of human cooperation and add evidence for oscillation in two-strategy games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Nowak, M.A., Sigmund, K.: How virtue was born. Gerontology 64, 201–204 (2018)

    Article  Google Scholar 

  2. Perc, M., Jordan, J.J., Rand, D.G., Wang, Z., Boccaletti, S., Szolnoki, A.: Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK (1982)

    Book  MATH  Google Scholar 

  4. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)

    Article  Google Scholar 

  5. Szabó, G., Fáth, G.: Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007)

    Article  MathSciNet  Google Scholar 

  6. Foster, K.R., Wenseleers, T., Ratnieks, F.L.W.: Kin selection is the key to altruism. Trens. Ecol. Evol. 21, 57–60 (2006)

    Article  Google Scholar 

  7. Traulsen, A., Nowak, M.A.: Evolution of cooperation by multilevel selection. Proc. Natl. Acad. Sci. USA 103, 10952–10955 (2006)

    Article  Google Scholar 

  8. Pacheco, J.M., Traulsen, A., Ohtsuki, H., Nowak, M.A.: Repeated games and direct reciprocity under active linking. J. Theor. Biol. 250, 723–731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity. Nature 437, 1291–1298 (2005)

    Article  Google Scholar 

  10. Sigmund, K., Hauert, C., Nowak, M.A.: Reward and punishment. Proc. Natl. Acad. Sci. USA 98, 10757–10762 (2001)

    Article  Google Scholar 

  11. Fowler, J.H.: Altruistic punishment and the origin of cooperation. Proc. Natl. Acad. Sci. USA 102, 7047–7049 (2005)

    Article  Google Scholar 

  12. Sasaki, T., Uchida, S.: The evolution of cooperation by social exclusion. Proc. R. Soc. B 280, 20122498 (2013)

    Article  Google Scholar 

  13. Szolnoki, A., Perc, M.: Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions to elementary strategies. Phys. Rev. X 3, 041021 (2013)

    Google Scholar 

  14. Szolnoki, A., Perc, M.: Second-order free-riding on antisocial punishment restores the effectiveness of prosocial punishment. Phys. Rev. X 7, 041027 (2017)

    Google Scholar 

  15. Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008)

    Article  Google Scholar 

  16. Perc, M., Szolnoki, A.: Coevolutionary games-a mini review. BioSystems 99, 109–125 (2010)

    Article  Google Scholar 

  17. Yang, Z., Yu, C., Kim, J., Li, Z., Wang, L.: Evolution of cooperation in synergistically evolving dynamic interdependent networks: fundamental advantages of coordinated network evolution. New J. Phys. 21, 073057 (2019)

    Article  MathSciNet  Google Scholar 

  18. Roca, C.P., Helbing, D.: Emergence of social cohesion in a model society of greedy, mobile individuals. Proc. Natl. Acad. Sci. USA 108, 11370–11374 (2011)

    Article  Google Scholar 

  19. Nowak, M.A., Bonhoeffer, S., May, R.M.: Spatial games and the maintenance of cooperation. Proc. Natl. Acad. Sci. USA 91, 4877–4881 (1994)

    Article  MATH  Google Scholar 

  20. Vainstein, M.H., Arenzon, J.J.: Disordered environments in spatial games. Phys. Rev. E 64, 051905 (2001)

    Article  Google Scholar 

  21. Vainstein, M.H., Silva, A.T.C., Arenzon, J.J.: Does mobility decrease cooperation? J. Theor. Biol. 244, 722–728 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helbing, D., Yu, W.: The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl. Acad. Sci. USA 106, 3680–3685 (2009)

    Article  Google Scholar 

  23. Aktipis, C.A.: Is cooperation viable in mobile organisms? Simple Walk Away rule favors the evolution of cooperation in groups. Evol. Hum. Behav. 32, 263–276 (2011)

    Article  Google Scholar 

  24. Yang, H.X., Wu, Z.X., Wang, B.H.: Role of aspiration-induced migration in cooperation. Phys. Rev. E 81, 065101 (2010)

    Article  Google Scholar 

  25. Cong, R., Wu, B., Qiu, Y., Wang, L.: Evolution of cooperation driven by reputation-based migration. PLoS ONE 7, e35776 (2012)

    Article  Google Scholar 

  26. Wu, T., Fu, F., Zhang, Y., Wang, L.: Expectation-driven migration promotes cooperation by group interactions. Phys. Rev. E 85, 066104 (2012)

    Article  Google Scholar 

  27. Chen, X., Szolnoki, A., Perc, M.: Risk-driven migration and the collective-risk social dilemma. Phys. Rev. E 86, 036101 (2012)

    Article  Google Scholar 

  28. Yang, Z., Wu, T., Li, Z., Wang, L.: Hunting for wealthy encounters promotes cooperation in spatial Prisoner’s Dilemma games. Eur. Phys. J. B 86, 158 (2013)

    Article  Google Scholar 

  29. Jiang, L.L., Wang, W.X., Lai, Y.C., Wang, B.H.: Role of adaptive migration in promoting cooperation in spatial games. Phys. Rev E 81, 036108 (2010)

    Article  Google Scholar 

  30. Ichinose, G., Saito, M., Sayama, H., Wilson, D.S.: Adaptive long-range migration promotes cooperation under tempting conditions. Sci. Rep. 3, 2509 (2013)

    Article  Google Scholar 

  31. Asch, S.E.: Opinions and social pressure. Sci. Am. 193, 31–35 (1955)

    Article  Google Scholar 

  32. Fiske, S.T.: Social Beings: Core Motives in Social Psychology. John Wiley & Sons, New York, NY (2009)

    Google Scholar 

  33. Capraro, V., Perc, M.: Mathematical foundations of moral preferences. J. R. Soc. Interface 18, 20200880 (2021)

    Article  Google Scholar 

  34. Fehr, E., Schmidt, K.M.: A theory of fairness, competition, and cooperation. Q. J. Econ. 114, 817–868 (1999)

    Article  MATH  Google Scholar 

  35. Bolton, G.E., Ockenfels, A.: ERC: A theory of equity, reciprocity, and competition. Am. Econ. Rev. 90, 166–193 (2000)

    Article  Google Scholar 

  36. Szolnoki, A., Wang, Z., Perc, M.: Wisdom of groups promotes cooperation in evolutionary social dilemmas. Sci. Rep. 2, 576 (2012)

    Article  Google Scholar 

  37. Szolnoki, A., Perc, M.: Conformity enhances network reciprocity in evolutionary social dilemmas. J. R. Soc. Interface 12, 20141299 (2015)

    Article  Google Scholar 

  38. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Article  Google Scholar 

  39. Doebeli, M., Hauert, C.: Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. Ecol. Lett. 8, 748–766 (2005)

    Article  Google Scholar 

  40. Yang, Z., Li, Z., Wang, L.: Evolution of cooperation in a conformity-driven evolving dynamic social network. Appl. Math. Comput. 379, 125251 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Szolnoki, A., Chen, X.: Competition and partnership between conformity and payoff-based imitations in social dilemmas. New J. Phys. 20, 093008 (2018)

    Article  Google Scholar 

  42. Sinervo, B., Lively, C.M.: The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996)

    Article  Google Scholar 

  43. Reichenbach, T., Mobilia, M., Frey, E.: Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 448, 1046–1049 (2007)

    Article  Google Scholar 

  44. Imhof, L.A., Fudenberg, D., Nowak, M.A.: Evolutionary cycles of cooperation and defection. Proc. Natl. Acad. Sci. USA 102, 10797–10800 (2005)

    Article  Google Scholar 

  45. Szolnoki, A., Mobilia, M., Jiang, L.L., Szczesny, B., Rucklidge, A.M., Perc, M.: Cyclic dominance in evolutionary games: a review. J. R. Soc. Interface 11, 20140735 (2014)

    Article  Google Scholar 

  46. Szolnoki, A., Wang, Z., Wang, J., Zhu, X.: Dynamically generated cyclic dominance in spatial prisoner’s dilemma games. Phys. Rev. E 82, 036110 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Z. Yang acknowledges the support from National Natural Science Foundation of China (NSFC) under Grant No. 61703323. Z. Li acknowledges the support from NSFC under Grant No. 61673310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihu Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Li, Z. Oscillation and burst transition of human cooperation. Nonlinear Dyn 108, 4599–4610 (2022). https://doi.org/10.1007/s11071-022-07376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07376-9

Keywords

Navigation