Cancer and Metastasis Reviews

, Volume 31, Issue 1–2, pp 195–208 | Cite as

Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression

NON-THEMATIC REVIEW

Abstract

Several recent papers have now provided compelling experimental evidence that the progression of tumours towards a malignant phenotype does not depend exclusively on the cell-autonomous properties of cancer cells themselves but is also deeply influenced by tumour stroma reactivity, thereby undergoing a strict environmental control. Tumour microenvironmental elements include structural components such as the extracellular matrix or hypoxia as well as stromal cells, either resident cells or recruited from circulating precursors, as macrophages and other inflammatory cells, endothelial cells and cancer-associated fibroblasts (CAFs). All these elements synergistically play a specific role in cancer progression. This review summarizes our current knowledge on the role of CAFs in tumour progression, with a particular focus on the biunivocal interplay between CAFs and cancer cells leading to the activation of the epithelial–mesenchymal transition programme and the achievement of stem cell traits, as well as to the metabolic reprogramming of both stromal and cancer cells. Recent advances on the role of CAFs in the preparation of metastatic niche, as well as the controversial origin of CAFs, are discussed in light of the new emerging therapeutic implications of targeting CAFs.

Keywords

Cancer-associated fibroblasts Tumour microenvironment Tumour metabolism Epithelial–mesenchymal transition ECM remodelling Hormonal dependence 

References

  1. 1.
    Gabbiani, G., Ryan, G. B., & Majne, G. (1971). Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia, 27(5), 549–550.PubMedCrossRefGoogle Scholar
  2. 2.
    Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews. Molecular Cell Biology, 3(5), 349–363.PubMedCrossRefGoogle Scholar
  3. 3.
    Desmouliere, A., Redard, M., Darby, I., & Gabbiani, G. (1995). Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. American Journal of Pathology, 146(1), 56–66.PubMedGoogle Scholar
  4. 4.
    Rasanen, K., & Vaheri, A. (2010). Activation of fibroblasts in cancer stroma. Experimental Cell Research, 316(17), 2713–2722.PubMedCrossRefGoogle Scholar
  5. 5.
    Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.PubMedCrossRefGoogle Scholar
  6. 6.
    Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews. Cancer, 6(5), 392–401.PubMedCrossRefGoogle Scholar
  7. 7.
    Pietras, K., & Ostman, A. (2010). Hallmarks of cancer: Interactions with the tumor stroma. Experimental Cell Research, 316(8), 1324–1331.PubMedCrossRefGoogle Scholar
  8. 8.
    Micke, P., & Ostman, A. (2004). Tumour–stroma interaction: Cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer, 45(Suppl 2), S163–S175.PubMedCrossRefGoogle Scholar
  9. 9.
    O’Brien, P., & O’Connor, B. F. (2008). Seprase: An overview of an important matrix serine protease. Biochimica et Biophysica Acta, 1784(9), 1130–1145.PubMedGoogle Scholar
  10. 10.
    Hasebe, T., Tamura, N., Okada, N., Hojo, T., Akashi-Tanaka, S., Shimizu, C., et al. (2010). p53 expression in tumor-stromal fibroblasts is closely associated with the nodal metastasis and outcome of patients with invasive ductal carcinoma who received neoadjuvant therapy. Human Pathology, 41(2), 262–270.PubMedCrossRefGoogle Scholar
  11. 11.
    Nakao, M., Ishii, G., Nagai, K., Kawase, A., Kenmotsu, H., Kon-No, H., et al. (2009). Prognostic significance of carbonic anhydrase IX expression by cancer-associated fibroblasts in lung adenocarcinoma. Cancer, 115(12), 2732–2743.PubMedCrossRefGoogle Scholar
  12. 12.
    Utispan, K., Thuwajit, P., Abiko, Y., Charngkaew, K., Paupairoj, A., Chau-in, S., et al. (2010). Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Molecular Cancer, 9, 13.PubMedCrossRefGoogle Scholar
  13. 13.
    Witkiewicz, A. K., Dasgupta, A., Sotgia, F., Mercier, I., Pestell, R. G., Sabel, M., et al. (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. American Journal of Pathology, 174(6), 2023–2034.PubMedCrossRefGoogle Scholar
  14. 14.
    Yamanashi, T., Nakanishi, Y., Fujii, G., Akishima-Fukasawa, Y., Moriya, Y., Kanai, Y., et al. (2009). Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma. Oncology, 77(1), 53–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Trimboli, A. J., Cantemir-Stone, C. Z., Li, F., Wallace, J. A., Merchant, A., Creasap, N., et al. (2009). Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 461(7267), 1084–1091.PubMedCrossRefGoogle Scholar
  16. 16.
    Hill, R., Song, Y., Cardiff, R. D., & van, D. T. (2005). Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell, 123(6), 1001–1011.PubMedCrossRefGoogle Scholar
  17. 17.
    Kiaris, H., Chatzistamou, I., Trimis, G., Frangou-Plemmenou, M., Pafiti-Kondi, A., & Kalofoutis, A. (2005). Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Research, 65(5), 1627–1630.PubMedCrossRefGoogle Scholar
  18. 18.
    Anderberg, C., & Pietras, K. (2009). On the origin of cancer-associated fibroblasts. Cell Cycle, 8(10), 1461–1462.PubMedCrossRefGoogle Scholar
  19. 19.
    Hinz, B., Phan, S. H., Thannickal, V. J., Galli, A., Bochaton-Piallat, M. L., & Gabbiani, G. (2007). The myofibroblast: One function, multiple origins. American Journal of Pathology, 170(6), 1807–1816.PubMedCrossRefGoogle Scholar
  20. 20.
    McAnulty, R. J. (2007). Fibroblasts and myofibroblasts: Their source, function and role in disease. The International Journal of Biochemistry & Cell Biology, 39(4), 666–671.CrossRefGoogle Scholar
  21. 21.
    Ostman, A., & Augsten, M. (2009). Cancer-associated fibroblasts and tumor growth—Bystanders turning into key players. Current Opinion in Genetics and Development, 19(1), 67–73.PubMedCrossRefGoogle Scholar
  22. 22.
    De, W. O., & Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. The Journal of Pathology, 200(4), 429–447.CrossRefGoogle Scholar
  23. 23.
    Giannoni, E., Bianchini, F., Masieri, L., Serni, S., Torre, E., Calorini, L., et al. (2010). Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial–mesenchymal transition and cancer stemness. Cancer Research, 70(17), 6945–6956.PubMedCrossRefGoogle Scholar
  24. 24.
    Lohr, M., Schmidt, C., Ringel, J., Kluth, M., Muller, P., Nizze, H., et al. (2001). Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Research, 61(2), 550–555.PubMedGoogle Scholar
  25. 25.
    Bronzert, D. A., Pantazis, P., Antoniades, H. N., Kasid, A., Davidson, N., Dickson, R. B., et al. (1987). Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 84(16), 5763–5767.PubMedCrossRefGoogle Scholar
  26. 26.
    Shao, Z. M., Nguyen, M., & Barsky, S. H. (2000). Human breast carcinoma desmoplasia is PDGF initiated. Oncogene, 19(38), 4337–4345.PubMedCrossRefGoogle Scholar
  27. 27.
    Strutz, F., Zeisberg, M., Hemmerlein, B., Sattler, B., Hummel, K., Becker, V., et al. (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney International, 57(4), 1521–1538.PubMedCrossRefGoogle Scholar
  28. 28.
    Cat, B., Stuhlmann, D., Steinbrenner, H., Alili, L., Holtkotter, O., Sies, H., et al. (2006). Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. Journal of Cell Science, 119(Pt 13), 2727–2738.PubMedCrossRefGoogle Scholar
  29. 29.
    Stuhlmann, D., Steinbrenner, H., Wendlandt, B., Mitic, D., Sies, H., & Brenneisen, P. (2004). Paracrine effect of TGF-beta1 on downregulation of gap junctional intercellular communication between human dermal fibroblasts. Biochemical and Biophysical Research Communications, 319(2), 321–326.PubMedCrossRefGoogle Scholar
  30. 30.
    Giannoni, E., Bianchini, F., Calorini, L., & Chiarugi, P. (2011). Cancer associated fibroblasts exploit reactive oxygen species through a pro-inflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxidand & Redox Signaling, 14, 2361–2371.CrossRefGoogle Scholar
  31. 31.
    Toullec, A., Gerald, D., Despouy, G., Bourachot, B., Cardon, M., Lefort, S., et al. (2010). Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Molecular Medicine, 2(6), 211–230.PubMedCrossRefGoogle Scholar
  32. 32.
    Georges, P. C., & Janmey, P. A. (2005). Cell type-specific response to growth on soft materials. Journal of Applied Physiology, 98(4), 1547–1553.PubMedCrossRefGoogle Scholar
  33. 33.
    Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139–1143.PubMedCrossRefGoogle Scholar
  34. 34.
    Assoian, R. K., & Klein, E. A. (2008). Growth control by intracellular tension and extracellular stiffness. Trends in Cell Biology, 18(7), 347–352.PubMedCrossRefGoogle Scholar
  35. 35.
    Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.PubMedCrossRefGoogle Scholar
  36. 36.
    Chun, T. H., Hotary, K. B., Sabeh, F., Saltiel, A. R., Allen, E. D., & Weiss, S. J. (2006). A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell, 125(3), 577–591.PubMedCrossRefGoogle Scholar
  37. 37.
    Huijbers, I. J., Iravani, M., Popov, S., Robertson, D., Al-Sarraj, S., Jones, C., et al. (2010). A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One, 5(3), e9808.PubMedCrossRefGoogle Scholar
  38. 38.
    Kauppila, S., Stenback, F., Risteli, J., Jukkola, A., & Risteli, L. (1998). Aberrant type I and type III collagen gene expression in human breast cancer in vivo. The Journal of Pathology, 186(3), 262–268.PubMedCrossRefGoogle Scholar
  39. 39.
    Hasebe, T., Sasaki, S., Imoto, S., Mukai, K., Yokose, T., & Ochiai, A. (2002). Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: A prospective observational study. Modern Pathology, 15(5), 502–516.PubMedCrossRefGoogle Scholar
  40. 40.
    Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRefGoogle Scholar
  41. 41.
    Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139(5), 891–906.PubMedCrossRefGoogle Scholar
  42. 42.
    Santhanam, A. N., Baker, A. R., Hegamyer, G., Kirschmann, D. A., & Colburn, N. H. (2010). Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene, 29(27), 3921–3932.PubMedCrossRefGoogle Scholar
  43. 43.
    Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., et al. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324(5933), 1457–1461.PubMedCrossRefGoogle Scholar
  44. 44.
    Shieh, A. C., Rozansky, H. A., Hinz, B., & Swartz, M. A. (2011). Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Research, 71(3), 790–800.PubMedCrossRefGoogle Scholar
  45. 45.
    Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J. F., Harrington, K., et al. (2007). Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology, 9(12), 1392–1400.PubMedCrossRefGoogle Scholar
  46. 46.
    Plow, E. F., Haas, T. A., Zhang, L., Loftus, J., & Smith, J. W. (2000). Ligand binding to integrins. Journal of Biological Chemistry, 275(29), 21785–21788.PubMedCrossRefGoogle Scholar
  47. 47.
    Velling, T., Risteli, J., Wennerberg, K., Mosher, D. F., & Johansson, S. (2002). Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. Journal of Biological Chemistry, 277(40), 37377–37381.PubMedCrossRefGoogle Scholar
  48. 48.
    Pankov, R., & Yamada, K. M. (2002). Fibronectin at a glance. Journal of Cell Science, 115(Pt 20), 3861–3863.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen, S. H., Lin, C. Y., Lee, L. T., Chang, G. D., Lee, P. P., Hung, C. C., et al. (2010). Up-regulation of fibronectin and tissue transglutaminase promotes cell invasion involving increased association with integrin and MMP expression in A431 cells. Anticancer Research, 30(10), 4177–4186.PubMedGoogle Scholar
  50. 50.
    Mitra, A. K., Sawada, K., Tiwari, P., Mui, K., Gwin, K., & Lengyel, E. (2011). Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene, 30(13), 1566–1576.PubMedCrossRefGoogle Scholar
  51. 51.
    Kobayashi, N., Miyoshi, S., Mikami, T., Koyama, H., Kitazawa, M., Takeoka, M., et al. (2010). Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Research, 70(18), 7073–7083.PubMedCrossRefGoogle Scholar
  52. 52.
    Wang, W., Li, Q., Yamada, T., Matsumoto, K., Matsumoto, I., Oda, M., et al. (2009). Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clinical Cancer Research, 15(21), 6630–6638.PubMedCrossRefGoogle Scholar
  53. 53.
    Jedeszko, C., Victor, B. C., Podgorski, I., & Sloane, B. F. (2009). Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Research, 69(23), 9148–9155.PubMedCrossRefGoogle Scholar
  54. 54.
    Matsumoto, K., & Nakamura, T. (2006). Hepatocyte growth factor and the Met system as a mediator of tumor–stromal interactions. International Journal of Cancer, 119(3), 477–483.CrossRefGoogle Scholar
  55. 55.
    Matsumoto, K., Okazaki, H., & Nakamura, T. (1995). Novel function of prostaglandins as inducers of gene expression of HGF and putative mediators of tissue regeneration. Journal of Biochemistry, 117(2), 458–464.PubMedCrossRefGoogle Scholar
  56. 56.
    Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.PubMedCrossRefGoogle Scholar
  57. 57.
    Gerber, P. A., Hippe, A., Buhren, B. A., Muller, A., & Homey, B. (2009). Chemokines in tumor-associated angiogenesis. Biological Chemistry, 390(12), 1213–1223.PubMedCrossRefGoogle Scholar
  58. 58.
    Matsuo, Y., Ochi, N., Sawai, H., Yasuda, A., Takahashi, H., Funahashi, H., et al. (2009). CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. International Journal of Cancer, 124(4), 853–861.CrossRefGoogle Scholar
  59. 59.
    Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–348.PubMedCrossRefGoogle Scholar
  60. 60.
    Augsten, M., Hagglof, C., Olsson, E., Stolz, C., Tsagozis, P., Levchenko, T., et al. (2009). CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3414–3419.PubMedCrossRefGoogle Scholar
  61. 61.
    Erez, N., Truitt, M., Olson, P., Arron, S. T., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147.PubMedCrossRefGoogle Scholar
  62. 62.
    Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science, 326(5957), 1216–1219.PubMedCrossRefGoogle Scholar
  63. 63.
    Roy, R., Yang, J., & Moses, M. A. (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. Journal of Clinical Oncology, 27(31), 5287–5297.PubMedCrossRefGoogle Scholar
  64. 64.
    Vosseler, S., Lederle, W., Airola, K., Obermueller, E., Fusenig, N. E., & Mueller, M. M. (2009). Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. International Journal of Cancer, 125(10), 2296–2306.CrossRefGoogle Scholar
  65. 65.
    Lederle, W., Hartenstein, B., Meides, A., Kunzelmann, H., Werb, Z., Angel, P., et al. (2010). MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis, 31(7), 1175–1184.PubMedCrossRefGoogle Scholar
  66. 66.
    Dean, J. P., & Nelson, P. S. (2008). Profiling influences of senescent and aged fibroblasts on prostate carcinogenesis. British Journal of Cancer, 98(2), 245–249.PubMedCrossRefGoogle Scholar
  67. 67.
    Blasi, F., & Sidenius, N. (2010). The urokinase receptor: Focused cell surface proteolysis, cell adhesion and signaling. FEBS Letters, 584(9), 1923–1930.PubMedCrossRefGoogle Scholar
  68. 68.
    Noskova, V., Ahmadi, S., Asander, E., & Casslen, B. (2009). Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecologic Oncology, 115(1), 121–126.PubMedCrossRefGoogle Scholar
  69. 69.
    Coppe, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.PubMedCrossRefGoogle Scholar
  70. 70.
    Davalos, A. R., Coppe, J. P., Campisi, J., & Desprez, P. Y. (2010). Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Reviews, 29(2), 273–283.PubMedCrossRefGoogle Scholar
  71. 71.
    Laberge, R. M., Awad, P., Campisi, J., & Desprez, P. Y. (2011). Epithelial–mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron. doi:10.1007/s12307-011-0069-4.
  72. 72.
    Lee, C. (1996). Role of androgen in prostate growth and regression: Stromal–epithelial interaction. The Prostate. Supplement, 6, 52–56.PubMedCrossRefGoogle Scholar
  73. 73.
    Chang, S. M., & Chung, L. W. (1989). Interaction between prostatic fibroblast and epithelial cells in culture: Role of androgen. Endocrinology, 125(5), 2719–2727.PubMedCrossRefGoogle Scholar
  74. 74.
    Cano, P., Godoy, A., Escamilla, R., Dhir, R., & Onate, S. A. (2007). Stromal–epithelial cell interactions and androgen receptor–coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Research, 67(2), 511–519.PubMedCrossRefGoogle Scholar
  75. 75.
    Ricciardelli, C., Choong, C. S., Buchanan, G., Vivekanandan, S., Neufing, P., Stahl, J., et al. (2005). Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate, 63(1), 19–28.PubMedCrossRefGoogle Scholar
  76. 76.
    Henshall, S. M., Quinn, D. I., Lee, C. S., Head, D. R., Golovsky, D., Brenner, P. C., et al. (2001). Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Research, 61(2), 423–427.PubMedGoogle Scholar
  77. 77.
    Zhao, Y., Nichols, J. E., Valdez, R., Mendelson, C. R., & Simpson, E. R. (1996). Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Molecular Endocrinology, 10(11), 1350–1357.PubMedCrossRefGoogle Scholar
  78. 78.
    Simpson, E. R., & Davis, S. R. (2001). Minireview: Aromatase and the regulation of estrogen biosynthesis—Some new perspectives. Endocrinology, 142(11), 4589–4594.PubMedCrossRefGoogle Scholar
  79. 79.
    Santen, R. J., Santner, S. J., Pauley, R. J., Tait, L., Kaseta, J., Demers, L. M., et al. (1997). Estrogen production via the aromatase enzyme in breast carcinoma: Which cell type is responsible? The Journal of Steroid Biochemistry and Molecular Biology, 61(3–6), 267–271.PubMedCrossRefGoogle Scholar
  80. 80.
    Howell, A., Cuzick, J., Baum, M., Buzdar, A., Dowsett, M., Forbes, J. F., et al. (2005). Results of the ATAC (arimidex, tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet, 365(9453), 60–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.PubMedCrossRefGoogle Scholar
  82. 82.
    De, W. O., Demetter, P., Mareel, M., & Bracke, M. (2008). Stromal myofibroblasts are drivers of invasive cancer growth. International Journal of Cancer, 123(10), 2229–2238.CrossRefGoogle Scholar
  83. 83.
    De Wever, O., Nguyen, Q. D., Van, H. L., Bracke, M., Bruyneel, E., Gespach, C., et al. (2004). Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. The FASEB Journal, 18(9), 1016–1018.Google Scholar
  84. 84.
    Kalluri, R. (2009). EMT: When epithelial cells decide to become mesenchymal-like cells. The Journal of Clinical Investigation, 119(6), 1417–1419.PubMedCrossRefGoogle Scholar
  85. 85.
    Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMedCrossRefGoogle Scholar
  86. 86.
    Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252.PubMedCrossRefGoogle Scholar
  87. 87.
    Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRefGoogle Scholar
  88. 88.
    Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26(5), 433–446.CrossRefGoogle Scholar
  89. 89.
    Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.PubMedCrossRefGoogle Scholar
  90. 90.
    Liao, C. P., Adisetiyo, H., Liang, M., & Roy-Burman, P. (2010). Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Research, 70(18), 7294–7303.PubMedCrossRefGoogle Scholar
  91. 91.
    Wu, Y., Deng, J., Rychahou, P. G., Qiu, S., Evers, B. M., & Zhou, B. P. (2009). Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell, 15(5), 416–428.PubMedCrossRefGoogle Scholar
  92. 92.
    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436(7047), 123–127.PubMedCrossRefGoogle Scholar
  93. 93.
    De, W. O., Pauwels, P., De, C. B., Sabbah, M., Emami, S., Redeuilh, G., et al. (2008). Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. Histochemistry and Cell Biology, 130(3), 481–494.CrossRefGoogle Scholar
  94. 94.
    Patocs, A., Zhang, L., Xu, Y., Weber, F., Caldes, T., Mutter, G. L., et al. (2007). Breast-cancer stromal cells with TP53 mutations and nodal metastases. The New England Journal of Medicine, 357(25), 2543–2551.PubMedCrossRefGoogle Scholar
  95. 95.
    Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes & Development, 23(5), 537–548.CrossRefGoogle Scholar
  96. 96.
    Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.PubMedCrossRefGoogle Scholar
  97. 97.
    Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.PubMedCrossRefGoogle Scholar
  98. 98.
    Vander Heiden, M. G., Locasale, J. W., Swanson, K. D., Sharfi, H., Heffron, G. J., Amador-Noguez, D., et al. (2010). Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science, 329(5998), 1492–1499.PubMedCrossRefGoogle Scholar
  99. 99.
    Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O’Meally, R., et al. (2011). Pyruvate kinase M2 Is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 145(5), 732–744.PubMedCrossRefGoogle Scholar
  100. 100.
    Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., et al. (2009). The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001.PubMedCrossRefGoogle Scholar
  101. 101.
    Martinez-Outschoorn, U. E., Trimmer, C., Lin, Z., Whitaker-Menezes, D., Chiavarina, B., Zhou, J., et al. (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle, 9(17), 3515–3533.PubMedCrossRefGoogle Scholar
  102. 102.
    Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.PubMedCrossRefGoogle Scholar
  103. 103.
    Garzon, R., Marcucci, G., & Croce, C. M. (2010). Targeting microRNAs in cancer: Rationale, strategies and challenges. Nature Reviews. Drug Discovery, 9(10), 775–789.PubMedCrossRefGoogle Scholar
  104. 104.
    Tazawa, H., Kagawa, S., & Fujiwara, T. (2011). MicroRNAs as potential target gene in cancer gene therapy of gastrointestinal tumors. Expert Opinion on Biological Therapy, 11(2), 145–155.PubMedCrossRefGoogle Scholar
  105. 105.
    Musumeci, M., Coppola, V., Addario, A., Patrizii, M., Maugeri-Sacca, M., Memeo, L., et al. (2011). Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene, 30, 4231–4242.PubMedCrossRefGoogle Scholar
  106. 106.
    Nielsen, B. S., Jorgensen, S., Fog, J. U., Sokilde, R., Christensen, I. J., Hansen, U., et al. (2011). High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clinical & Experimental Metastasis, 28(1), 27–38.CrossRefGoogle Scholar
  107. 107.
    Yao, Q., Cao, S., Li, C., Mengesha, A., Kong, B., & Wei, M. (2011). Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor–stroma interaction. International Journal of Cancer, 128(8), 1783–1792.CrossRefGoogle Scholar
  108. 108.
    Aprelikova, O., Yu, X., Palla, J., Wei, B. R., John, S., Yi, M., et al. (2010). The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle, 9(21), 4387–4398.PubMedCrossRefGoogle Scholar
  109. 109.
    Lim, P. K., Bliss, S. A., Patel, S. A., Taborga, M., Dave, M. A., Gregory, L. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research, 71(5), 1550–1560.PubMedCrossRefGoogle Scholar
  110. 110.
    Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung pre-metastatic niche. Cancer Research, 71, 5346–5356.PubMedCrossRefGoogle Scholar
  111. 111.
    Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: From dissemination to organ-specific colonization. Nature Reviews. Cancer, 9(4), 274–284.PubMedCrossRefGoogle Scholar
  112. 112.
    Tu, S. M., Lin, S. H., & Logothetis, C. J. (2002). Stem-cell origin of metastasis and heterogeneity in solid tumours. The Lancet Oncology, 3(8), 508–513.PubMedCrossRefGoogle Scholar
  113. 113.
    Psaila, B., & Lyden, D. (2009). The metastatic niche: Adapting the foreign soil. Nature Reviews. Cancer, 9(4), 285–293.PubMedCrossRefGoogle Scholar
  114. 114.
    Duda, D. G., Duyverman, A. M., Kohno, M., Snuderl, M., Steller, E. J., Fukumura, D., et al. (2010). Malignant cells facilitate lung metastasis by bringing their own soil. Proceedings of the National Academy of Sciences of the United States of America, 107, 21677–21682.PubMedCrossRefGoogle Scholar
  115. 115.
    Sung, S. Y., Hsieh, C. L., Law, A., Zhau, H. E., Pathak, S., Multani, A. S., et al. (2008). Coevolution of prostate cancer and bone stroma in three-dimensional coculture: Implications for cancer growth and metastasis. Cancer Research, 68(23), 9996–10003.PubMedCrossRefGoogle Scholar
  116. 116.
    Pietras, K., Pahler, J., Bergers, G., & Hanahan, D. (2008). Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Medicine, 5(1), e19.PubMedCrossRefGoogle Scholar
  117. 117.
    Wu, M. P., Young, M. J., Tzeng, C. C., Tzeng, C. R., Huang, K. F., Wu, L. W., et al. (2008). A novel role of thrombospondin-1 in cervical carcinogenesis: Inhibit stroma reaction by inhibiting activated fibroblasts from invading cancer. Carcinogenesis, 29(6), 1115–1123.PubMedCrossRefGoogle Scholar
  118. 118.
    Wen, J., Matsumoto, K., Taniura, N., Tomioka, D., & Nakamura, T. (2004). Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Therapy, 11(6), 419–430.PubMedCrossRefGoogle Scholar
  119. 119.
    Kim, K. J., Wang, L., Su, Y. C., Gillespie, G. Y., Salhotra, A., Lal, B., et al. (2006). Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clinical Cancer Research, 12(4), 1292–1298.PubMedCrossRefGoogle Scholar
  120. 120.
    Crawford, Y., Kasman, I., Yu, L., Zhong, C., Wu, X., Modrusan, Z., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15(1), 21–34.PubMedCrossRefGoogle Scholar
  121. 121.
    Sato, N., Maehara, N., & Goggins, M. (2004). Gene expression profiling of tumor–stromal interactions between pancreatic cancer cells and stromal fibroblasts. Cancer Research, 64(19), 6950–6956.PubMedCrossRefGoogle Scholar
  122. 122.
    Hu, M., Peluffo, G., Chen, H., Gelman, R., Schnitt, S., & Polyak, K. (2009). Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3372–3377.PubMedCrossRefGoogle Scholar
  123. 123.
    Mann, J., Oakley, F., Akiboye, F., Elsharkawy, A., Thorne, A. W., & Mann, D. A. (2007). Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: Implications for wound healing and fibrogenesis. Cell Death and Differentiation, 14(2), 275–285.PubMedCrossRefGoogle Scholar
  124. 124.
    Scott, A. M., Wiseman, G., Welt, S., Adjei, A., Lee, F. T., Hopkins, W., et al. (2003). A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clinical Cancer Research, 9(5), 1639–1647.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemical ScienceUniversity of FlorenceFlorenceItaly

Personalised recommendations