Previous studies have investigated the frequency and magnitude of head impacts in other tackle football populations, including youth (7–8 years), high school (14–18 years), and college (18–23 years) in the last decade (Table 5).5,11,25,27 Data from these studies show a trend of increasing acceleration magnitude and impact frequency with increasing level of play. Not surprisingly, the 9–12 year old players in this study were found to experience linear acceleration magnitudes between those found in 7–8 year old players and high school players. For rotational acceleration, the 95th percentile magnitude found in this study was less than that found previously in younger players.11 Rotational acceleration tends to correlate well with linear acceleration, though impact location can heavily influence the relationship.27 Players in this study experienced more impacts to the front of their helmets and fewer to the side than the 7–8 year old players studied by Daniel et al.11 In that study, impacts to the front of player’s helmets were associated with lower rotational acceleration magnitudes, while those to the side were associated with higher magnitudes.
Table 5 Comparison of head impact exposure across various levels of play3,5,11,25,27
As with magnitude, the impact frequency reported in this study fell between those of 7–8 year old and high school athletes. In this study, the average player experienced 240 impacts throughout the season compared to 107 impacts per season for 7–8 year old players and 565 for high school players.3,5,11 This trend can be partially attributed to the number of sessions (practices and games) increasing as the level of play increases. The 7–8 year old team studied by Daniel et al.11 experienced impacts in 9.4 practices and 4.7 games for a total of 14.1 sessions. Players in this study participated in an average of 14.4 contact practices and 7.4 games, for a total of 21.8 sessions. Compared to the high school team studied by Broglio et al.,3 the teams in this study participated in fewer practices and games in addition to experiencing fewer impacts per session. High school players experienced on average 15.9 impacts per session whereas the 9–12 year old players in this study experienced 10.6 impacts per session. The age related differences reported among these three age groups are most likely due to increased size, athleticism, and aggression in older players.
Players experienced slightly greater impact frequencies and acceleration magnitudes in games than in practice, similar to findings of high school and college football studies.4,7,9,29 For example, a group of high school players, experienced a mean linear acceleration magnitude of 23 g in practices and 25 g in games while the players in this study had a mean linear acceleration magnitude of 22 g in practices and 23 g in games.5 With regard to impact frequency, players in this study experienced a similar number of impacts per practice as per game. The rate of impact in practice was similar to the 9.2 impacts per practice that Broglio et al.5 reported for high school football players. However, the high school players sustained 24.5 impacts per game. These data suggest that high school players experience fewer impacts in practice than in games, while the 9–12 year old players in this study had roughly equal numbers of impacts per session for the two session types.
Substantial differences in impact frequency were observed between team A and the other two teams. For the entire season, players on team A experienced an average of 37–46% fewer impacts than players on teams B and C, though only the difference between teams A and B was statistically significant. This difference is largely due to players on teams B and C participating in 2.1–2.3 times more contact practices than players on team A. The average number of games each player participated in was nearly the same for all three teams, and team A actually had the highest average number of impacts per game at 15.2. Team B and C players averaged 9.9 and 9.6 impacts per game, respectively. Since team A had fewer players than the other two teams, their players may have had more playing time leading to more impacts per game, though other factors such as playing style or skill may have also played a role. For practices, team A players averaged just 6.2 impacts per session compared to 12.9 and 9.5 for teams B and C. Furthermore, players from teams B and C participated in twice as many practice sessions as those from team A. As a result of the higher rate of impact in practices and greater number of practices, team B and C players experienced 219 and 175 impacts during practices, while team A players averaged 48 impacts.
Several factors may have played a role in reducing the head impact exposure observed in team A players relative to teams B and C in this study. First, Pop Warner mandated two rule changes for the 2012 football season that applied to all of their affiliates: (1) a mandatory minimum play rule, where coaches are required to give each player a certain amount of playing time, and (2) a limit on contact in practice, where no more than one-third of weekly practice time and no more than 40 min of a single session can involve contact drills.28 While no team in this study was affiliated with Pop Warner, the league in which team A competed enforced the same rule changes, whereas teams B and C had no such restrictions. Second, special teams plays, including kickoffs and punts, were live plays for teams B and C, similar to high school, college, and professional football. Alternatively, team A’s special teams plays were controlled situations where no contact was allowed. Data from previous studies suggest that players on special teams are more susceptible to large magnitude head accelerations, which may lead to higher incidence of concussion on these plays.2,18,21 Third, all three teams played approximately the same number of games during the season, but teams B and C played 11 and 12 week seasons while team A had a 9 week season. With more time between games, teams generally practice at a higher frequency and intensity. Fourth, player skill, athleticism, and maturity could have implications on the level of exposure. Even within teams, variability among players is apparent, with some players experiencing substantially more impacts than the team average. No significant differences were found in game acceleration magnitudes or impact frequency, suggesting practice differences were not due to player differences among teams. Instrumented players ranged from experiencing 72 to 585 head impacts. Fifth, coaching style has major influence on factors such as the types of drills used in practice and the plays called in games. These coaching variations would likely contribute to the differences in the head impact exposure that players experienced.
Two of the impacts (A8 and B4) associated with diagnosed concussions were substantially greater than the player’s season 95th percentile linear acceleration magnitude. Furthermore, the acceleration magnitudes were consistent with concussive values reported in previous studies, albeit at the lower end of the range.16,25,27 For player A8, the impact was the third highest linear acceleration magnitude he experienced during the season and second highest magnitude resulting from an impact to the front of the helmet. The two highest magnitude impacts that this player experienced were similar in magnitude to the concussive impact. For player B4, the concussive impact was his highest magnitude impact to the back of the helmet for the season. This player also accumulated the third highest number of impacts during the season among all study participants. The third impact associated with a concussion (C18) was in the top 20% of linear acceleration magnitudes for that player throughout the season. Although the acceleration magnitude was relatively low for a concussion, it was the player’s second highest magnitude resulting from an impact to the side of the helmet.
The data collected in this study may have applications towards improving the safety of youth football through rule changes, coach training, and equipment design. Prior to the 2012 season, many youth football organizations, including the league in which team A competed, modified rules, and provided coaches with practice guidelines to reduce head impacts in practice. The data collected in this study suggest that head impact exposure over the course of a season can be reduced significantly by limiting contact in practices to levels below those experienced in games. In addition to guiding future rules for youth football, this study can be used to aid designers in developing youth-specific football helmets that may be able to better reduce head accelerations due to head impacts for young football players. Impact location, frequency, and head acceleration magnitudes can be used to optimize helmet padding to maximize protection while keeping factors such as helmet size and mass to age appropriate levels.
A number of limitations should be noted about this study. First, the HIT system used for data collection is associated with some measurement error for linear and rotational acceleration. On average, the HIT system overestimates linear acceleration by 1% and rotational acceleration by 6% when compared to the Hybrid III headform. The correlation between the HIT system and Hybrid III measurements of head acceleration is R
2 = 0.903 for linear acceleration and R
2 = 0.528 for rotational acceleration.1 Individual data points have uncertainty values due to random error as well; however, the analysis presented here primarily examined distributions of data sets, rather than individual points. Uncertainty values that account for the random error are included with the three concussive data points presented. Second, this study followed three teams consisting of 9–12 year old players with a total of 50 players with large variations in head impact exposure among the different teams and players. Head impact exposure is likely dependent on other factors, in addition to age.
Real-time head impact kinematic data were collected from youth football players, age 9–12 years, during practice and game sessions for an entire season. The data show, on average, that players experienced greater head impact exposure, through more frequent and higher magnitude impacts, than 7–8 year old players, but less than that of high school players. Furthermore, players experienced similar levels of head impact exposure in practice and game sessions on a per-session basis. The vast majority of head impacts recorded in both games and practices were below acceleration magnitudes generally associated with concussions; though, some high magnitude impacts, similar to those seen among older players, did occur. The data presented in this study suggest that head impact exposure at the youth level may effectively be reduced by limiting contact in practices. Future studies are required to determine how rule modifications, coaching style, and other factors influence player impact exposure in practice. Furthermore, additional research is required to determine how reducing head impact exposure in practice affects concussion risk in youth football. Researcher should continue to collect head impact kinematic data in youth football across all age groups to establish the level of head impact exposure a typical player experiences, in a season and career, in order to improve player safety in youth football.