Skip to main content
Log in

Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material (FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton’s principle. A neutral surface is used to eliminate stretching–bending coupling in FGM plates on the basis of the assumption of constant Poisson’s ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-of-variables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koizumi, M.: The concept of FGM. Ceram. Trans. Func. Grad. Mater. 34, 3–10 (1993)

    Google Scholar 

  2. Koizumi, M.: FGM activities in Japan. Compos. Pt B. Eng. 28, 1–4 (1997)

  3. Xing, Y.F., Liu, B.: New exact solutions for free vibrations of rectangular thin plates by symplectic dual method. Acta. Mech. Sin. 25, 265–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xing, Y.F., Liu, B.: New exact solutions for free vibrations of thin orthotropic rectangular plates. Compos. Struct. 89, 567–574 (2009)

  5. Xing, Y.F., Xu, T.F.: Solution methods of exact solutions for free vibration of rectangular orthotropic thin plates with classical boundary conditions. Compos. Struct. 104, 187–195 (2013)

    Article  Google Scholar 

  6. Yang, J., Shen, H.S.: Dynamic response of initially stressed functionally graded rectangular thin plates. Compos. Struct. 54, 497–508 (2001)

    Article  Google Scholar 

  7. Abrate, S.: Free vibration, buckling, and static deflections of functionally graded plates. Compos. Sci. Technol. 66, 2383–2394 (2006)

    Article  Google Scholar 

  8. Abrate, S.: Functionally graded plates behave like homogeneous plates. Compos. Pt B. Eng. 39, 151–158 (2008)

    Article  Google Scholar 

  9. Zhang, D.G., Zhou, Y.H.: A theoretical analysis of FGM thin plates based on physical neutral surface. Comput. Mat. Sci. 44, 716–720 (2008)

    Article  Google Scholar 

  10. Yin, S., Yu, T., Liu, P.: Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface. Adv. Mech. Eng. 5, 634584 (2013)

    Google Scholar 

  11. Li, S.R., Wang, X., Batra, R.C.: Correspondence relations between deflection, buckling load, and frequencies of thin functionally graded material plates and those of corresponding homogeneous plates. J. Appl. Mech. 82, 111006 (2015)

    Article  Google Scholar 

  12. Thai, H.T., Uy, B.: Levy solution for buckling analysis of functionally graded plates based on a refined plate theory. J. Mech. E. Pt C. 227, 2649–2664 (2013)

    Google Scholar 

  13. Reddy, J.N., Wang, C., Kitipornchai, S.: Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech. 18, 185–199 (1999)

    Article  MATH  Google Scholar 

  14. Hosseini-Hashemi, S., Fadaee, M., Atashipour, S.R.: A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates. Int. J. Mech. Sci. 53, 11–22 (2011)

    Article  Google Scholar 

  15. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Meth. Eng. 684, 663–684 (2000)

    Article  MATH  Google Scholar 

  16. Yang, J., Shen, H.S.: Vibration characteristics and transient response of shear deformable functionally graded plates in thermal environments. J. Sound. Vib. 255, 579–602 (2002)

    Article  Google Scholar 

  17. Kim, Y.W.: Temperature dependent vibration analysis of functionally graded rectangular plates. J. Sound. Vib. 284, 531–549 (2005)

    Article  Google Scholar 

  18. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., et al.: Stress, vibration and buckling analyses of FGM plates–a state-of-the art review. Compos. Struct. 120, 10–31 (2015)

    Article  Google Scholar 

  19. Thai, H.T., Kim, S.E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015)

    Article  Google Scholar 

  20. Sayyad, A.S., Ghugal, Y.M.: On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results. Compos. Struct. 129, 177–201 (2015)

    Article  Google Scholar 

  21. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stresses. 21, 593–626 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grants 11172028, 1372021), Research Fund for the Doctoral Program of Higher Education of China (Grant 20131102110039), and the Innovation Foundation of Beihang University for PhD graduates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Xing.

Appendices

Appendix 1

Here the elastic foundation and in-plane loads are not involved. The dimensionless natural frequency parameter is \(\omega ^{{*}}=\omega a^{2}\sqrt{\rho h/D}\). As for the SUS304 and \(\hbox {Si}_{3}\hbox {N}_{4}\) plates, we have

$$\begin{aligned}&\omega _{{\mathrm{Si}_3 \mathrm{N}_4} }^{*} =\omega _{\mathrm{Si}_3 \mathrm{N}_4 } a^{2}\sqrt{\rho _{\mathrm{Si}_3 \mathrm{N}_4 } h/D_{\mathrm{Si}_3 \mathrm{N}_4 } } ,\nonumber \\&\omega _{\mathrm{SUS304}}^{*} =\omega _{\mathrm{SUS304}} a^{2}\sqrt{\rho _{\mathrm{SUS304}} h/D_{\mathrm{SUS304}} }. \end{aligned}$$
(A1)

From Eq. (24) one finds that the frequency parameter \(\omega ^{{*}}\) is the same for thin plates with different materials since the elastic foundation and in-plane loads are not taken into account here, that is

$$\begin{aligned} \omega _{\mathrm{Si}_3 \mathrm{N}_4 }^{*} =\omega _{\mathrm{SUS304}}^{*}. \end{aligned}$$
(A2)

Substitution of Eq. (A1) into Eq. (A2) yields

$$\begin{aligned} \frac{\omega _{\mathrm{Si}_3 \mathrm{N}_4 } }{\omega _{\mathrm{SUS304}} }=\frac{\sqrt{\rho _{\mathrm{SUS304}} /D_{\mathrm{SUS304}} }}{\sqrt{\rho _{\mathrm{Si}_3 \mathrm{N}_4 } /D_{\mathrm{Si}_3 \mathrm{N}_4 } }}. \end{aligned}$$
(A3)

Yang and Shen [6] used the dimensionless natural frequency parameter \(\omega ^{*}=\omega a^{2}\sqrt{\rho _{\mathrm{SUS304}} h/D_{\mathrm{SUS304}} }\) for plates with different materials, then

$$\begin{aligned}&\omega _{\mathrm{Si}_3 \mathrm{N}_4 }^{*} =\omega _{\mathrm{Si}_3 \mathrm{N}_4 } a^{2}\sqrt{\rho _{\mathrm{SUS304}} h/D_{\mathrm{SUS304}} }, \nonumber \\&\omega _{\mathrm{SUS304}}^{*} =\omega _{\mathrm{SUS304}} a^{2}\sqrt{\rho _{\mathrm{SUS304}} h/D_{\mathrm{SUS304}} }, \end{aligned}$$
(A4)

from which we have

$$\begin{aligned} \frac{\omega _{\mathrm{Si}_3 \mathrm{N}_4 }^{*} }{\omega _{\mathrm{SUS304}}^{*} }=\frac{\omega _{\mathrm{Si}_3 \mathrm{N}_4 } }{\omega _{\mathrm{SUS304}} }. \end{aligned}$$
(A5)

To substitute the material properties of SUS304 and \(\hbox {Si}_{3}\hbox {N}_{4}\) as given in Table 3 into Eq. (A3), and to substitute the ensuing results into Eq. (A5), one can obtain that the ratio of the frequency parameter \(\omega ^{*}\) between \(\hbox {Si}_{3}\hbox {N}_{4 }\) and SUS304 is 2.2579 (Table 13). In Sect. 4.1, we use the same dimensionless natural frequency parameter as Yang and Shen [6] in numerical comparisons, \(\omega _{\mathrm{Si}_3 \mathrm{N}_4 }^{*} / \omega _{\mathrm{SUS304}}^{*} \), which is also 2.2579 (Table 13); therefore, it can be concluded that the present results are correct. But using the numerical results of Yang and Shen [6], \(\omega _{\mathrm{Si}_3 \mathrm{N}_4 }^{*} /\omega _{\mathrm{SUS304}}^{*} \) is 1.2164, and this shows that some numerical results of Yang and Shen [6] may not be correct.

Appendix 2

The differential operators in Eq. (18) are as follows

$$\begin{aligned} L_{11} \left( \right)= & {} A_{11} \frac{\partial ^{2}}{\partial x^{2}}+A_{66} \frac{\partial ^{2}}{\partial y^{2}}, \nonumber \\ L_{12} \left( \right)= & {} A_{12} \frac{\partial ^{2}}{\partial x\partial y}+A_{66} \frac{\partial ^{2}}{\partial x\partial y}, \nonumber \\ L_{13} \left( \right)= & {} -B_{11} \frac{\partial ^{3}}{\partial x^{3}}-\left( {B_{12} +2B_{66} } \right) \frac{\partial ^{3}}{\partial x\partial y^{2}}, \nonumber \\ L_{22} \left( \right)= & {} A_{66} \frac{\partial ^{2}}{\partial x^{2}}+A_{22} \frac{\partial ^{2}}{\partial y^{2}}, \nonumber \\ L_{23} \left( \right)= & {} -\left( {B_{12} +2B_{66} } \right) \frac{\partial ^{3}}{\partial x^{2}\partial y}-B_{22} \frac{\partial ^{3}}{\partial y^{3}} ,\nonumber \\ L_{33} \left( \right)= & {} D_{11} \frac{\partial ^{4}}{\partial x^{4}}+2\left( {D_{12} +2D_{66} } \right) \frac{\partial ^{4}}{\partial x^{2}\partial y^{2}}+D_{22} \frac{\partial ^{4}}{\partial y^{4}}, \nonumber \\ L_{34} \left( \right)= & {} -\left( {F_x \frac{\partial ^{2}}{\partial x^{2}}+2F_{xy} \frac{\partial ^{2}}{\partial x\partial y}+F_y \frac{\partial ^{2}}{\partial y^{2}}} \right) , \nonumber \\&\nabla ^{2}=\frac{\partial ^{2}}{\partial x^{2}}+\frac{\partial ^{2}}{\partial y^{2}}. \end{aligned}$$
(A6)

And the boundary conditions derived using Hamilton’s principle have the following forms:

$$\begin{aligned}&\left. {\left( {N_x \delta u_0 +N_{xy} \delta v_0 } \right) } \right| _0^a =0, \nonumber \\&\left. {\left( {N_y \delta v_0 +N_{xy} \delta u_0 } \right) } \right| _0^b =0, \nonumber \\&\left. \left[ Q_x +\frac{\partial M_{xy} }{\partial y}+F_{xy} \frac{\partial w}{\partial y}+(K_2 +F_x )\frac{\partial w}{\partial x}\right. \right. \nonumber \\&\quad \left. \left. + \, \left( {I_1 \frac{\partial ^{2}u_0 }{\partial t^{2}}-I_2 \frac{\partial ^{3}w}{\partial x\partial t^{2}}} \right) \right] \delta w \right| _0^a =0,\nonumber \\&\left. \left[ Q_y +\frac{\partial M_{xy} }{\partial x}+F_{xy} \frac{\partial w}{\partial x}+(K_2 +F_y )\frac{\partial w}{\partial y}\right. \right. \nonumber \\&\quad \left. \left. + \, \left( {I_1 \frac{\partial ^{2}v_0 }{\partial t^{2}}-I_2 \frac{\partial ^{3}w}{\partial y\partial t^{2}}} \right) \right] \delta w \right| _0^b =0,\nonumber \\&\left. {M_x \frac{\partial \delta w}{\partial x}} \right| _0^a =0 ,\nonumber \\&\left. {M_y \frac{\partial \delta w}{\partial y}} \right| _0^b =0, \nonumber \\&\left. {\left. {2M_{xy} \delta w} \right| _0^a } \right| _0^b =0. \end{aligned}$$
(A7)

The shear forces are given by following relations:

$$\begin{aligned} Q_x= & {} \frac{\partial M_x }{\partial x}+\frac{\partial M_{xy} }{\partial y}, \nonumber \\ Q_y= & {} \frac{\partial M_y }{\partial y}+\frac{\partial M_{xy} }{\partial x}. \end{aligned}$$
(A8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T.F., Xing, Y.F. Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation. Acta Mech. Sin. 32, 1088–1103 (2016). https://doi.org/10.1007/s10409-016-0600-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0600-4

Keywords

Navigation