Advertisement

Climate Dynamics

, Volume 47, Issue 11, pp 3547–3573 | Cite as

The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project

  • Aaron Anthony Boone
  • Yongkang Xue
  • Fernando De Sales
  • Ruth E. Comer
  • Samson Hagos
  • Sarith Mahanama
  • Kathleen Schiro
  • Guoqiong Song
  • Guiling Wang
  • S. Li
  • Carlos R. Mechoso
Article

Abstract

The population of the Sahel region of West Africa has approximately doubled in the past 50 years, and could potentially double again by the middle of this century. This has led to the northward expansion of agricultural areas at the expense of natural savanna, leading to widespread land use -land cover change (LULCC). Because there is strong evidence of significant surface-atmosphere coupling in this region, one of the main goals of the West African Monsoon Modeling and Evaluation project phase II is to provide basic understanding of LULCC on the regional climate, and to evaluate the sensitivity of the seasonal variability of the West African Monsoon to LULCC. The prescribed LULCC is based on the changes from 1950 through 1990, representing a maximum feasible degradation scenario in the past half century. It is applied to 5 state of the art global climate models (GCMs) over a 6-year simulation period. Multiple GCMs are used because the magnitude of the impact of LULCC depends on model-dependent coupling strength between the surface and the overlying atmosphere, the magnitude of the surface biophysical changes, and how the key processes linking the surface with the atmosphere are parameterized within a particular model framework. Land cover maps and surface parameters may vary widely among models; therefore a special effort was made to impose consistent biogeophysical responses of surface parameters to LULCC using a simple experimental setup. The prescribed LULCC corresponds to degraded vegetation conditions, which mainly cause increases in the Bowen ratio and decreases in the surface net radiation, and result in a significant reduction in surface evaporation (upwards of 1 mm day−1 over a large part of the Sahel). This, in turn, mainly leads to less moisture convergence and precipitation over the LULCC zone. The overall impact is a rainfall reduction with every model, which ranges across models from 4 to 25 % averaged over the Sahel, and a southward shift of the rainfall peak in three of the five models which evokes a precipitation dipole pattern which is consistent with the observed pattern for dry climate anomalies over this region. The African Easterly Jet shifts equator-ward, although the strength of this change varies considerably among the models. In most of the models, the main factor causing diabatic cooling of the upper troposphere and enhanced subsidence over the region of LULCC is the reduction of convective heating rates linked to reduced latent heat flux and moisture flux convergence. In broad agreement with previous studies, the impact of degradation on the regional climate is found to vary among the different models, however, the signal is stronger and more consistent between the models here than in previous inter-comparison projects. This is likely related to our emphasis on prioritizing a consistent impact of LULCC on the surface biophysical properties.

Keywords

African monsoon Land use land cover change Land degradation Climate simulations Land surface models Land–atmosphere coupling 

Notes

Acknowledgments

This study was supported by the French component of AMMA. Based on French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, especially from France, UK, US and Africa. It has been beneficiary of a major financial contribution from the European Community’s Sixth Framework Research Programme. Detailed information on scientific coordination and funding is available on the AMMA International website http://www.amma-international.org. The authors acknowledge the ESPRI/IPSL database team for hosting the WAMME2 workspace within the framework of the AMMA database, and to K. Ramage, S. Bouffies-Cloche, and L. Fleury for their kind assistance with the WAMME2 database. We wish to acknowledge comments by R. Koster. R. Comer’s contribution was funded by the UK Department for International Development (DFID). The WAMME activity and analysis are supported by U.S. NSF Grants AGS-1115506 and AGS-1419526.

References

  1. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large scale environment. J Atmos Sci 31:674–701CrossRefGoogle Scholar
  2. Blein R, Soulé BG, Dupaigre BF, Yérma B (2008) Agricultural Potential of West Africa. Economic Community of West African States (ECOWAS). Foundation pour l’agriculture et la ruralité dans le monde (FARM). pp 118Google Scholar
  3. Boone A, Poccard-Leclerq I, Xue Y, Feng J, De Rosnay P (2010) Evaluation of the WAMME model surface fluxes using results from the AMMA land-surface model intercomparison project. Clim Dyn 35:127–142. doi: 10.1007/s00382-009-0653-1 CrossRefGoogle Scholar
  4. Charney JG (1975) Dynamics of deserts and drought in the Sahel. Q J R Meteorl Soc 101:193–202CrossRefGoogle Scholar
  5. Charney JG, Quirk WJ, Chow S-H, Kornfield J (1977) A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385CrossRefGoogle Scholar
  6. Chou MI, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Mem 104606(3):85Google Scholar
  7. Chou M-D, Suarez MJ, Liang XZ, Yan M-H (2001) A thermal infrared radiation parameterization for atmospheric studies. Technical report series on global modeling and data assimilation, vol 19, NASA/TM-2001-104606. pp 68Google Scholar
  8. Cook KH (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184CrossRefGoogle Scholar
  9. Dardel C, Kergoat L, Hiernaux P, Mougin E, Grippa M, Tucker CJ (2014) Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens Environ 140:350–364CrossRefGoogle Scholar
  10. de Noblet-Ducoudré N, Boisier J, Pitman A, Bonan G, Brovkin V, Cruz F, Delire C, Gayler V, van den Kurk B, Lawrence D, van der Molen M, Müller C, Reick C, Strengers B, Voldoire A (2012) Determining robust impacts of land-use induced land-cover changeson surface climate over North America and Eurasia; Results from the first set of LUCID experiments. J Clim 25:3261–3281. doi: 10.1175/JCLI-D-11-00338.1 CrossRefGoogle Scholar
  11. Derbyshire SH (2011) Adaptive detrainment in a convective parametrization. Q J R Meteorol Soc 137:1856–1871CrossRefGoogle Scholar
  12. Dirmeyer PA (2011) The terrestrial segment of soil moisture-climate coupling. Geophys Res Lett 38:L16702. doi: 10.1029/2011GL048268 CrossRefGoogle Scholar
  13. Dirmeyer PA, Schlosser CA, Brubaker KL (2009) Precipitation, recycling, and land memory: an integrated analysis. J Hydrometeorol 10:278–288CrossRefGoogle Scholar
  14. Douglas EM, Beltrán-Przekurat A, Niyogi D, Pielke RA Sr, Vörösmarty CJ (2009) The impact of agricultural intensification and irrigation on land-atmosphere interactions and Indian monsoon precipitation-a mesoscale modeling perspective. Glob Planet Change 67:117–128. doi: 10.1016/j.gloplacha.2008.12.007 CrossRefGoogle Scholar
  15. Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719CrossRefGoogle Scholar
  16. Essery RLH, Best MJ, Betts RA, Cox PM (2002) Explicit representation of subgrid heterogeneity in a GCM land-surface scheme. J Hydrometeorol 4:530–545CrossRefGoogle Scholar
  17. Govaerts Y, Lattanzio A (2008) Estimation of surface albedo increase during the eighties Sahel drought from Meteosat observations. Glob Planet Change 64:139–145CrossRefGoogle Scholar
  18. Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39:1329–1348CrossRefGoogle Scholar
  19. HadGEM2 model development team (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757CrossRefGoogle Scholar
  20. Hagos S, Leung LR, Xue Y, Boone A, de Sales F, Neupane N, Huang M, Yoon JH (2014) Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model. Clim Dyn 43:2765–2775. doi: 10.1007/s00382-014-2092-x CrossRefGoogle Scholar
  21. Hansen MC, DeFries RS, Townshend JR, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1303–1330CrossRefGoogle Scholar
  22. Harshvardhan DaviesR, Randall DA, Corsetti TG (1987) A fast radiation parameterization for atmospheric circulation models. J Geophys Res 92:1009–1016CrossRefGoogle Scholar
  23. Houldcroft CJ, Grey WMF, Barnsley M, Taylor CM, Los SO, North PRJ (2009) New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. J Hydrometeorol 10:183–198. doi: 10.1175/2008JHM1021.1 CrossRefGoogle Scholar
  24. Hourdin F, Musat I, Grandpeix J-Y, Polcher J, Guichard F, Favot F, Marquet P, Boone A, Lafore J-P, Redelsperger J-L, Ruti PM, Dell’aquila A, Filiberti MA, Pham M, Doval TL, Traore AK, Gallée H (2010) AMMA-model intercomparison project. Bull Am Meteorol Soc 91:95–104. doi: 10.1175/2009BAMS2791.1 CrossRefGoogle Scholar
  25. Hurtt GC, Frolking S, Fearon MG, Moore B III, Shevliakova E, Malyshev S, Pacala SW, Houghton RA (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood harvest activity, and resulting secondary lands. Glob Change Biol 12:1208–1229. doi: 10.1111/j.1365-2486.2006.01150.x CrossRefGoogle Scholar
  26. Hurtt GC, Chini LP, Frolking S, Betts R, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones C, Kindermann G, Kinoshita T, Klein Goldewijk K, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang Y (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 Years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change 109:117–161. doi: 10.1007/s10584-011-0153-2 CrossRefGoogle Scholar
  27. Iacono M, Delamere J, Mlawer E, Shephard M, Clough S, Collins W (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113D:13103CrossRefGoogle Scholar
  28. IGBP (1992) Improved global data for land applications. In: Townshend JRG (ed) IGBP Global Change Report No 20. International Geosphere-Biosphere Programme, StockholmGoogle Scholar
  29. IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  30. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  31. Kang H-S, Xue Y, Collatz GJ (2007) Impact assessment of satellite-derived leaf area index datasets using a general circulation model. J Clim 20:993–1015. doi: 10.1175/JCLI4054.1 CrossRefGoogle Scholar
  32. Kim D-H, Sexton JO, Townshend JR (2014) Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys Res Lett 42:3495–3501. doi: 10.1002/2014GL062777 CrossRefGoogle Scholar
  33. Kim DH, Sexton JO, Noojipady P, Huang C, Anand A, Channan S, Feng M, Townshend JR (2015) Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sens Environ 155:178–193CrossRefGoogle Scholar
  34. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140CrossRefGoogle Scholar
  35. Koster R, Suarez MJ, Ducharne A, Kumar P, Stieglitz M (2000) A catchment based approach to modeling land surface processes in a GCM—Part 1: model structure. J Geophys Res 105:809–822CrossRefGoogle Scholar
  36. Kuchler AW (1983) World map of natural vegetation. Goode’s World Atlas, 16th edn. Rand McNally, pp 16–17Google Scholar
  37. Laval K, Picon L (1986) Effect of a change of the surface albedo of the Sahel on climate. J Atmos Sci 43:2418–2429CrossRefGoogle Scholar
  38. Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the community land model (CLM 3.0). J Geophys Res 112:G01023. doi: 10.1029/2006JG000168 Google Scholar
  39. Leblanc MJ, Favreau G, Massuel S, Tweed SO, Loireau M, Cappelaere B (2008) Land clearance and hydrological change in the Sahel: SW Niger. Glob Planet Change 61:135–150. doi: 10.1016/j.gloplacha.2007.08.011 CrossRefGoogle Scholar
  40. Li W, Xue Y, Poccard I (2007) Numerical investigation of the impact of vegetation indices on the variability of West African summer monsoon. J Meteorol Soc Jpn 85A:363–383CrossRefGoogle Scholar
  41. Mahmood R, Pielke RA Sr, Hubbard KG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltran-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2014) Land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953. doi: 10.1002/joc.3736 CrossRefGoogle Scholar
  42. Mechoso CR, Yu JY, Arakawa A (2000) A coupled GCM pilgrimage: from climate catastrophe to ENSO simulations. General circulation model development: past, present and future. In: Proceedings of a symposium in honor of professor Akio Arakawa, D. A. Randall. Academic Press, USA, pp 539–575Google Scholar
  43. Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert: a parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002CrossRefGoogle Scholar
  44. Newell RE, Kidson JW (1984) African means wind changes between Sahelian wet and dry periods. Int J Climatol 4:27–33CrossRefGoogle Scholar
  45. Nicholson SE (2008) The intensity, location and structure of the tropical rain belt over West Africa as factors in interannual variability. Int J Climatol 28:1775–1785CrossRefGoogle Scholar
  46. Nicholson SE (2013) The West African Sahel: a review of recent studies on the rainfall regime and its variability. ISRN Meteorol. doi: 10.1155/2013/453521 Google Scholar
  47. Nicholson SE, Grist JP (2001) A simple conceptual model for understanding rainfall variability in the West African Sahel on interannual and interdecadal time scales. Int J Climatol 21:1733–1757CrossRefGoogle Scholar
  48. Nicholson SE, Tucker CJ, Ba MB (1998) Desertification, drought, and surface vegetation: an example from the West African Sahel. Bull Am Meteorol Soc 79:1–15CrossRefGoogle Scholar
  49. Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stöckli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi: 10.1029/2007JG000563 CrossRefGoogle Scholar
  50. Pielke RA Sr, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim Change 2:828–850. doi: 10.1002/wcc.144 CrossRefGoogle Scholar
  51. Pitman AJ, de Noblet-Ducoudré N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V et al (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36:L14814. doi: 10.1029/2009GL039076 CrossRefGoogle Scholar
  52. Ramankutty N, Evan A, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:GB1003. doi: 10.1029/2007GB002952 CrossRefGoogle Scholar
  53. Redelsperger J-L, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteorol Soc 87:1739–1746CrossRefGoogle Scholar
  54. Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger J-L (2013) The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26:6471–6505. doi: 10.1175/JCLI-D-12-00505.1 CrossRefGoogle Scholar
  55. Saeed F, Hagemann S, Jacob D (2009) Impact of irrigation on the South Asian summer monsoon. Geophys Res Lett 36:L20711. doi: 10.1029/2009GL040625 CrossRefGoogle Scholar
  56. Santer BD, Wigley TML (1990) Regional validation of means, variances, and spatial patterns in general circulation model control runs. J Geophys Res 95:829–850CrossRefGoogle Scholar
  57. Song G (2013) Global and Sahel regional biophysical processes, vegetation dynamics, and climate interactions. PhD Dissertation. University of California, Los Angeles, p 183Google Scholar
  58. Sud YC, Fennessy M (1982) A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM. J Climatol 2:105–125CrossRefGoogle Scholar
  59. Taylor CM, Parker DJ, Kalthoff N, Gaertner MA, Philippon N, Bastin S, Harris PP, Boone A, Guichard F, Flamant C, Grandpeix J-Y, Cerlini P, Baldi M, Descroix L, Douville H, Polcher J, Agusti-Panareda A (2011) New perspectives on land-atmosphere feedbacks from the African monsoon multidisciplinary analysis (AMMA). Atmos Sci Lett 12:38–44. doi: 10.1002/asl.336 CrossRefGoogle Scholar
  60. Taylor CM, de Jeu RichardAM, Guichard F, Harris PP, Dorigo WA (2012a) Afternoon rain more likely over drier soils. Nature 489:423–426. doi: 10.1038/nature11377 CrossRefGoogle Scholar
  61. Taylor KE, Stouffer RJ, Meehl GA (2012b) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  62. Tuinenberg OA, Hutjes RWA, Kabat P (2012) The fate of evaporated water from the Ganges basin. J Geophys Res. doi: 10.1029/2011JD016221 Google Scholar
  63. Wang GL, Eltahir EAB (2000) The role of ecosystem dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour Res 36(4):1013–1021CrossRefGoogle Scholar
  64. Wang G, Yu M, Xue Y (2015) Modeling the potential contribution of land use changes to the 20th century Sahel drought using a regional climate model: impact of lateral boundary conditions. Clim Dyn 34:929–953. doi: 10.1007/s00382-015-2812-x Google Scholar
  65. Wei J, Dirmeyer PA, Wisser D, Bosilovich MJ, Mocko DM (2013) Where does the irrgation water go? An estimate of the contribution of iirgation to precipitation using MERRA. J Hydrometeorol 14:275–289. doi: 10.1175/JHM-D-12-079.1 CrossRefGoogle Scholar
  66. Xue Y (1997) Biosphere feedback on regional climate in tropical North Africa. Q J R Meteorol Soc 123:1483–1515CrossRefGoogle Scholar
  67. Xue Y, Dirmeyer PA (2015) Land-atmosphere interactions in monsoon regimes and future prospects for enhancing prediction. CLIVAR Exchanges 19(66):28–33Google Scholar
  68. Xue Y, Liou KN, Kasahara A (1990) Investigation of the biogeophysical feedback on the African climate using a two-dimensional model. J Clim 3:337–352CrossRefGoogle Scholar
  69. Xue Y, Sellers PJ, Kinter JL, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364CrossRefGoogle Scholar
  70. Xue Y, Juang HM, Li W, Prince S, DeFries R, Jiao Y, Vasic R (2004) Role of land surface processes in monsoon development: East Asia and West Africa. J Geophys Res 109:D03105. doi: 10.1029/2003JD003556 Google Scholar
  71. Xue Y, De Sales F, Lau KMW, Boone A, Feng J, Dirmeyer P, Guo Z, Kim KM, Kitoh A, Kumar V, Poccard-Leclercq I, Mahowald N, Moufouma-Okia W, Pegion P, Rowell D, Schubert SD, Sealy A, Thiaw WM, Vintzileos A, Williams S, Wu MLC (2010a) Intercomparison and analyses of the climatology of the West African monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) First Model Intercomparison Experiment. Clim Dyn 35:3–27. doi: 10.1007/s00382-010-0778-2 CrossRefGoogle Scholar
  72. Xue Y, De Sales F, Vasic R, Mechoso CR, Prince SD, Arakawa A (2010b) Global and temporal characteristics of seasonal climate/vegetation biophysical processes (VBP) interactions. J Clim 23:1411–1433CrossRefGoogle Scholar
  73. Xue Y, Boone A, Taylor CM (2012) Review and prospective of recent development in West African atmosphere/land interaction studies. Int J Geophys. doi: 10.1155/2012/748921 Google Scholar
  74. Xue Y, De Sales F, Lau WK-M, Boone A, Kim K-M, Mechoso CR, Wang G, Kucharski F, Schiro K, Hosaka M, Li S, Druyan LM, Seidou Sanda I, Thiaw W, Zeng N, Comer RE, Lim Y-K, Mahanama S, Song G, Gu Y, Hagos SM, Chin M, Schubert S, Dirmeyer P, Leung LR, Kalnay E, Kitoh A, Lu C-H, Mahowald NM, Zhang Z (2016) West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation project experiment (WAMME II). Clim Dyn. doi: 10.1007/s00382-016-3224-2 Google Scholar
  75. Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos Ocean 33:407–446CrossRefGoogle Scholar
  76. Zhang Z, Xue Y, MacDonald G, Cox PM, Collatz GJ (2015) Investigation of North American vegetation variability under recent climate—a study using the SSiB4/TRIFFID biophysical/dynamic vegetation model. J Geophy Res 120:1300–1321. doi: 10.1002/2014JD021963 Google Scholar
  77. Zheng XY, Eltahir EAB (1997) The response to deforestation and desertification in a model of West African monsoons. Geophys Res Lett 24:155–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Aaron Anthony Boone
    • 1
  • Yongkang Xue
    • 2
  • Fernando De Sales
    • 7
  • Ruth E. Comer
    • 4
  • Samson Hagos
    • 5
  • Sarith Mahanama
    • 6
  • Kathleen Schiro
    • 2
  • Guoqiong Song
    • 2
  • Guiling Wang
    • 3
  • S. Li
    • 2
  • Carlos R. Mechoso
    • 2
  1. 1.CNRM UMR 3589Météo-France/CNRSToulouseFrance
  2. 2.University of CaliforniaLos AngelesUSA
  3. 3.University of ConnecticutStorrsUSA
  4. 4.Met Office Hadley CentreExeterUK
  5. 5.Pacific Northwest National LaboratoryRichlandUSA
  6. 6.SSAI, Lanham, MD, and Global Modeling and Assimilation Office, NASA Goddard Space Flight CenterGreenbeltUSA
  7. 7.San Diego State UniversitySan DiegoUSA

Personalised recommendations