Marine Biology

, Volume 160, Issue 8, pp 2207–2245 | Cite as

Impacts of ocean acidification on marine shelled molluscs

  • Frédéric GazeauEmail author
  • Laura M. ParkerEmail author
  • Steeve Comeau
  • Jean-Pierre Gattuso
  • Wayne A. O’Connor
  • Sophie Martin
  • Hans-Otto Pörtner
  • Pauline M. Ross
Original Paper


Over the next century, elevated quantities of atmospheric CO2 are expected to penetrate into the oceans, causing a reduction in pH (−0.3/−0.4 pH unit in the surface ocean) and in the concentration of carbonate ions (so-called ocean acidification). Of growing concern are the impacts that this will have on marine and estuarine organisms and ecosystems. Marine shelled molluscs, which colonized a large latitudinal gradient and can be found from intertidal to deep-sea habitats, are economically and ecologically important species providing essential ecosystem services including habitat structure for benthic organisms, water purification and a food source for other organisms. The effects of ocean acidification on the growth and shell production by juvenile and adult shelled molluscs are variable among species and even within the same species, precluding the drawing of a general picture. This is, however, not the case for pteropods, with all species tested so far, being negatively impacted by ocean acidification. The blood of shelled molluscs may exhibit lower pH with consequences for several physiological processes (e.g. respiration, excretion, etc.) and, in some cases, increased mortality in the long term. While fertilization may remain unaffected by elevated pCO2, embryonic and larval development will be highly sensitive with important reductions in size and decreased survival of larvae, increases in the number of abnormal larvae and an increase in the developmental time. There are big gaps in the current understanding of the biological consequences of an acidifying ocean on shelled molluscs. For instance, the natural variability of pH and the interactions of changes in the carbonate chemistry with changes in other environmental stressors such as increased temperature and changing salinity, the effects of species interactions, as well as the capacity of the organisms to acclimate and/or adapt to changing environmental conditions are poorly described.



This work was supported by the French programme PNEC (Programme national environnement côtier; Institut national des sciences de l’univers) and is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 211384, to the “Mediterranean Sea Acidification in a changing climate” project (MedSeA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 265103 and to the German “Biological Impact of Ocean Acidification (BIOACID)” project funded by the Federal Ministry of Education and Research (BMBF). We thank the editor and 2 anonymous reviewers for very constructive feedback.

Supplementary material

227_2013_2219_MOESM1_ESM.docx (336 kb)
Supplementary material 1 (DOCX 337 kb)


  1. Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:981–987. doi: 10.1002/chem.200500980 Google Scholar
  2. Airoldi L, Beck MW (2007) Loss, status and trends for coastal marine habitats of Europe. Oceanography and marine biology, vol 45. CRC Press/Taylor & Francis Group, Boca Raton, pp 345–405Google Scholar
  3. Almada-Villela PC (1984) The effects of reduced salinity on the shell growth of small Mytilus edulis. J Mar Biol Assoc UK 64:171–182CrossRefGoogle Scholar
  4. Almada-Villela PC, Davenport J, Gruffydd LD (1982) The effects of temperature on the shell growth of young Mytilus edulis L. J Exp Mar Biol Ecol 59:275–288CrossRefGoogle Scholar
  5. Amaral V, Cabral H, Bishop M (2012) Moderate acidification affects growth but not survival of 6-month-old oysters. Aquat Ecol 46:119–127. doi: 10.1007/s10452-011-9385-5 CrossRefGoogle Scholar
  6. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446CrossRefGoogle Scholar
  7. Asmus RM, Asmus H (1991) Mussel beds—limiting or promoting phytoplankton. J Exp Mar Biol Ecol 148:215–232CrossRefGoogle Scholar
  8. Aydin KY, McFarlane GA, King JR, Megrey BA, Myers KW (2005) Linking oceanic food webs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales. Deep Sea Res Part II 52:757–780CrossRefGoogle Scholar
  9. Bamber RN (1987) The effects of acidic sea water on young carpet-shell clams Venerupsis desussata (L.) (Mollusca: Veneracea). J Exp Mar Biol Ecol 108:241–260CrossRefGoogle Scholar
  10. Bamber RN (1990) The effects of acidic seawater on 3 species of lamellibranch mollusc. J Exp Mar Biol Ecol 143:181–191CrossRefGoogle Scholar
  11. Barnes RD (1974) Invertebrate Zoology, 3rd edn. W.B. Saunders Company, Philadelphia, London, TorontoGoogle Scholar
  12. Barton A, Hales B, Waldbusser GG, Langdon C, Feely RA (2012) The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnol Oceanogr 57:698–710. doi: 10.4319/lo.2012.57.3.0698 CrossRefGoogle Scholar
  13. Bayne BL, Hawkins AJS (1992) Ecological and physiological aspects of herbivory in benthic suspension-feeding molluscs. In: John DM, Hawkins SJ, Price JH (eds) Plant–animal interactions in the marine benthos. Clarendon Press, Oxford, pp 265–288Google Scholar
  14. Bechmann RK, Taban IC, Westerlund S, Godal BF, Arnberg M, Vingen S, Ingvarsdottir A, Baussant T (2011) Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). J Toxicol Environ Health Part A 74:424–438. doi: 10.1080/15287394.2011.550460 CrossRefGoogle Scholar
  15. Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Cohen A, Kuzirian A, McCorkle D, Lézé B, Montagna R (2012a) Description and quantification of pteropod shell dissolution: a sensitive bioindicator of ocean acidification. Glob Chang Biol 18:2378–2388. doi: 10.1111/j.1365-2486.2012.02668.x CrossRefGoogle Scholar
  16. Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Jones EM, Venables HJ, Ward P, Kuzirian A, Leze B, Feely RA, Murphy EJ (2012b) Extensive dissolution of live pteropods in the Southern Ocean. Nat Geosci 5:881–885. doi: 10.1038/ngeo1635 CrossRefGoogle Scholar
  17. Beesley A, Lowe DM, Pascoe CK, Widdicombe S (2008) Effects of CO2 induced seawater acidification on the health of Mytilus edulis. Clim Res 37:215–225CrossRefGoogle Scholar
  18. Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419:95–108. doi: 10.3354/meps08841 CrossRefGoogle Scholar
  19. Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Oxnevad S (2006) Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere 62:681–687CrossRefGoogle Scholar
  20. Berger WH (1978) Deep-sea carbonate—pteropod distribution and aragonite compensation depth. Deep Sea Res 25:447–452CrossRefGoogle Scholar
  21. Berner RA (1977) Sedimentation and dissolution of pteropods in the ocean. In: Andersen NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Plenum Press, New York, pp 243–260Google Scholar
  22. Berner RA, Honjo S (1981) Pelagic sedimentation of aragonite: its geochemical significance. Science 211:940–942CrossRefGoogle Scholar
  23. Beukema JJ (1980) Calcimass and carbonate production by mollusks on the tidal flats in the Dutch Wadden Sea. I. The Tellinid bivalve Macoma balthica. Neth J Sea Res 14:323–338CrossRefGoogle Scholar
  24. Beukema JJ (1982) Calcimass and carbonate production by mollusks on the tidal flats in the Dutch Wadden Sea. II. The edible-cockle, Cerastoderma edule. Neth J Sea Res 15:391–405CrossRefGoogle Scholar
  25. Beukema JJ, Cadee GC (1999) An estimate of the sustainable rate of shell extraction from the Dutch Wadden Sea. J Appl Ecol 36:49–58CrossRefGoogle Scholar
  26. Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J (2007) Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol Lett 3:699–701CrossRefGoogle Scholar
  27. Bibby R, Widdicombe S, Parry H, Spicer J, Pipe R (2008) Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat Biol 2:67–74CrossRefGoogle Scholar
  28. Bishop MJ, Powers SP, Porter HJ, Peterson CH (2006) Benthic biological effects of seasonal hypoxia in a eutrophic estuary predate rapid coastal development. Estuar Coast Shelf Sci 70:415–422. doi: 10.1016/j.ecss.2006.06.031 CrossRefGoogle Scholar
  29. Borges AV, Gypens N (2010) Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnol Oceanogr 55:346–353CrossRefGoogle Scholar
  30. Borges AV, Schiettecatte L-S, Abril G, Delille B, Gazeau F (2006) Carbon dioxide in European coastal waters. Estuar Coast Shelf Sci 70:375–387CrossRefGoogle Scholar
  31. Boudry P, Collet B, Cornette F, Hervouet V, Bonhomme F (2002) High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204:283–296. doi: 10.1016/s0044-8486(01)00841-9 CrossRefGoogle Scholar
  32. Brečević L, Nielsen AE (1989) Solubility of amorphous calcium carbonate. J Cryst Growth 98:504–510. doi: 10.1016/0022-0248(89)90168-1 CrossRefGoogle Scholar
  33. Brennand HS, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE 5:e11372. doi: 10.1371/journal.pone.0011372 CrossRefGoogle Scholar
  34. Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanography and marine biology: an annual review, vol 49, pp 1–42Google Scholar
  35. Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilisation and early development under near-future climate change scenarios. Proc R Soc B Biol Sci 276:1183–1888CrossRefGoogle Scholar
  36. Byrne M, Soars NA, Ho MA, Wong E, McElroy D, Selvakumaraswamy P, Dworjanyn SA, Davis AR (2010) Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Mar Biol 157:2061–2069. doi: 10.1007/s00227-010-1474-9 CrossRefGoogle Scholar
  37. Byrne M, Ho M, Wong E, Soars NA, Selvakumaraswamy P, Shepard-Brennand H, Dworjanyn SA, Davis AR (2011) Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proc R Soc B Biol Sci 278:2376–2383. doi: 10.1098/rspb.2010.2404 CrossRefGoogle Scholar
  38. Cai W-J, Hu X, Huang W-J, Murrell MC, Lehrter JC, Lohrenz SE, Chou W-C, Zhai W, Hollibaugh JT, Wang Y, Zhao P, Guo X, Gundersen K, Dai M, Gong G-C (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci (advance online publication).
  39. Calabrese A, Davis HC (1966) The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Biol Bull 131:427–436Google Scholar
  40. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  41. Cardoso JFMF, Witte JI, van der Veer HW (2006) Intra- and interspecies comparison of energy flow in bivalve species in Dutch coastal waters by means of the Dynamic Energy Budget (DEB) theory. J Sea Res 56:182–197CrossRefGoogle Scholar
  42. Castel J, Labourg PJ, Escaravage V, Auby I, Garcia ME (1989) Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meiobenthos and macrobenthos in tidal flats. Estuar Coast Shelf Sci 28:71–85CrossRefGoogle Scholar
  43. Chapman AD (2009) Numbers of living species in Australia and the world, 2nd edn. Australian Government, Department of the Environment, Water, Heritage and the Arts, CanberraGoogle Scholar
  44. Chauvaud L, Thompson JK, Cloern JE, Thouzeau G (2003) Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay. Limnol Oceanogr 48:2086–2092CrossRefGoogle Scholar
  45. Cigliano M, Gambi MC, Rodolfo-Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502. doi: 10.1007/s00227-010-1513-6 CrossRefGoogle Scholar
  46. Coen LD, Brumbaugh RD, Bushek D, Grizzle R, Luckenbach MW, Posey MH, Powers SP, Tolley SG (2007) Ecosystem services related to oyster restoration. Mar Ecol Prog Ser 341:303–307CrossRefGoogle Scholar
  47. Comeau S, Gorsky G, Jeffree R, Teyssié JL, Gattuso J-P (2009) Key Arctic pelagic mollusc (Limacina helicina) threatened by ocean acidification. Biogeosciences 6:1877–1882CrossRefGoogle Scholar
  48. Comeau S, Gorsky G, Alliouane S, Gattuso JP (2010a) Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Mar Biol 157:2341–2345. doi: 10.1007/s00227-010-1493-6 CrossRefGoogle Scholar
  49. Comeau S, Jeffree R, Teyssié J-L, Gattuso J-P (2010b) Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS ONE 5:e11362CrossRefGoogle Scholar
  50. Comeau S, Gattuso J-P, Nisumaa A-M, Orr J (2011) Impact of aragonite saturation state changes on migratory pteropods. Proc R Soc B Biol Sci. doi: 10.1098/rspb.2011.0910 Google Scholar
  51. Comeau S, Alliouane S, Gattuso JP (2012) Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicina. Mar Ecol Prog Ser 456:279–284. doi: 10.3354/meps09696 CrossRefGoogle Scholar
  52. Crenshaw MA, Neff JM (1969) Decalcification at mantle–shell interface in molluscs. Am Zool 9:881–885Google Scholar
  53. Crim RN, Sunday JM, Harley CDG (2011) Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). J Exp Mar Biol Ecol 400:272–277. doi: 10.1016/j.jembe.2011.02.002
  54. Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N, Heath P, Halliday NJ, Sedcole R, Gomez A, McGraw C, Metcalf V (2011) Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS ONE 6:e16069CrossRefGoogle Scholar
  55. Davis HC (1958) Survival and growth of clam and oyster larvae at different salinities. Biol Bull 114:296–307Google Scholar
  56. Davis HC, Calabrese A (1964) Combined effects of temperature and salinity on development of eggs and growth of larvae of M. mercenaria and C. virginica. Fish Bull Fish Wildl Serv 63:643–655Google Scholar
  57. Deigweiher K, Bock C, Lucassen M, Pörtner HO (2009) Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids. J Comp Physiol B 180:347–359CrossRefGoogle Scholar
  58. Desrosiers RR, Desilets J, Dube F (1996) Early developmental events following fertilization in the giant scallop Placopecten magellanicus. Can J Fish Aquat Sci 53:1382–1392Google Scholar
  59. Dickinson GH, Ivanina AV, Matoo OB, Pörtner HO, Lannig G, Bock C, Beniash E, Sokolova IM (2012) Interactive effects of salinity and elevated CO2 levels on juvenile Eastern oysters, Crassostrea virginica. J Exp Biol 215:29–43. doi: 10.1242/jeb.061481 CrossRefGoogle Scholar
  60. Dineshram R, Wong KKW, Xiao S, Yu Z, Qian PY, Thiyagarajan V (2012) Analysis of Pacific oyster larval proteome and its response to high-CO2. Mar Pollut Bull 64:2160–2167. doi: 10.1016/j.marpolbul.2012.07.043 CrossRefGoogle Scholar
  61. Dove MC, Sammut J (2007) Impacts of estuarine acidification on survival and growth of Sydney rock oysters Saccostrea Glomerata (Gould 1850). J Shellfish Res 26:519–527CrossRefGoogle Scholar
  62. Dupont S, Dorey N, Thorndyke M (2010) What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estu Coast Shelf Sci 89:182–185. doi: 10.1016/j.ecss.2010.06.013 Google Scholar
  63. Ellis RP, Bersey J, Rundle SD, Hall-Spencer JM, Spicer JI (2009) Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat Biol 5:41–48. doi: 10.3354/ab00118 CrossRefGoogle Scholar
  64. Eyster LS (1986) Shell inorganic composition and onset of shell mineralization during bivalve and gastropod embryogenesis. Biol Bull 170:211–231CrossRefGoogle Scholar
  65. Fabry VJ, Deuser WG (1991) Aragonite and magnesian calcite fluxes to the deep Sargasso Sea. Deep Sea Res Part A 38:713–728CrossRefGoogle Scholar
  66. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  67. FAO (2008) Food and Agriculture Organization of the United Nations. Report of the FAO expert workshop on climate change implications for fisheries and aquaculture, RomeGoogle Scholar
  68. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492. doi: 10.1126/science.1155676 CrossRefGoogle Scholar
  69. Fernandez-Reiriz MJ, Range P, Alvarez-Salgado XA, Espinosa J, Labarta U (2012) Tolerance of juvenile Mytilus galloprovincialis to experimental seawater acidification. Mar Ecol Prog Ser 454:65–74. doi: 10.3354/meps09660 CrossRefGoogle Scholar
  70. Fernández-Reiriz MJ, Range P, Ávarez-Salgado XA, Labarta U (2011) Physiological energetics of juvenile clams Ruditapes decussatus in a high CO2 coastal ocean. Mar Ecol Prog Ser 433:97–105. doi: 10.3354/meps09062 CrossRefGoogle Scholar
  71. Frankignoulle M, Pichon M, Gattuso J-P (1995) Aquatic calcification as a source of carbon dioxide. In: Beran MA (ed) Carbon sequestration in the biosphere. Springer, Berlin, pp 266–271Google Scholar
  72. Gaylord B, Hill TM, Sanford E, Lenz EA, Jacobs LA, Sato KN, Russell AD, Hettinger A (2011) Functional impacts of ocean acidification in an ecologically critical foundation species. J Exp Biol 214:2586–2594. doi: 10.1242/jeb.055939 CrossRefGoogle Scholar
  73. Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603. doi: 10.1029/2006GL028554 CrossRefGoogle Scholar
  74. Gazeau F, Gattuso J-P, Dawber C, Pronker AE, Peene F, Peene J, Heip CHR, Middelburg JJ (2010) Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7:2051–2060CrossRefGoogle Scholar
  75. Gazeau F, Gattuso JP, Greaves M, Elderfield H, Peene J, Heip CHR, Middelburg JJ (2011) Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas). PLoS ONE 6:e23010. doi: 10.1371/journal.pone.0023010 CrossRefGoogle Scholar
  76. Gooding RA, Harley CDG, Tang E (2009) Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proc Natl Acad Sci USA 106:9316–9321. doi: 10.1073/pnas.0811143106 CrossRefGoogle Scholar
  77. Gosling E (2003) Bivalve molluscs: biology, ecology and culture. Fishing News Books, OxfordCrossRefGoogle Scholar
  78. Grant J, Hatcher A, Scott DB, Pocklington P, Schafer CT, Winters GV (1995) A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. Estuaries 18:124–144. doi: 10.2307/1352288 CrossRefGoogle Scholar
  79. Green MA, Jones ME, Boudreau CL, Moore RL, Westman BA (2004) Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnol Oceanogr 49:727–734CrossRefGoogle Scholar
  80. Green MA, Waldbusser GG, Reilly SL, Emerson K, O’Donnell S (2009) Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol Oceanogr 54:1037–1047CrossRefGoogle Scholar
  81. Gutiérrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90CrossRefGoogle Scholar
  82. Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674. doi: 10.1111/j.1600-0706.2010.19469.x CrossRefGoogle Scholar
  83. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99. doi: 10.1038/nature07051 CrossRefGoogle Scholar
  84. Hammer KM, Kristiansen E, Zachariassen KE (2011) Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia; Limidae). Mar Environ Res 72:135–142. doi: 10.1016/j.marenvres.2011.07.002 CrossRefGoogle Scholar
  85. Hankewich, Lessard (2006) Resurvey of northern abalone, Haliotis kamtschatkana, populations along the central coast of British Columbia, May 2006. Issue 2838 of Canadian manuscript report of fisheries and aquatic sciences. Fisheries & Oceans Canada, Science Branch, Pacific Region, Pacific Biological Station, 2008, 41 ppGoogle Scholar
  86. Harris JO, Maguire GB, Edwards SJ, Hindrum SM (1999) Effect of pH on growth rate, oxygen consumption rate, and histopathology of gill and kidney tissue for juvenile greenlip abalone, Haliotis laevigata Donovan and blacklip abalone, Haliotis rubra Leach. J Shellfish Res 18:611–619Google Scholar
  87. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus A, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Review: marine ecology—emerging marine diseases—climate links and anthropogenic factors. Science 285:1505–1510CrossRefGoogle Scholar
  88. Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences 6:3009–3015CrossRefGoogle Scholar
  89. Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:R651–R652. doi: 10.1016/j.cub.2008.06.015 CrossRefGoogle Scholar
  90. Hayakaze E, Tanabe K (1999) Early larval shell development in mytilid bivalve Mytilus galloprovincialis. Venus 58:119–127Google Scholar
  91. Hiebenthal C, Philipp ER, Eisenhauer A, Wahl M (2012) Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Mar Biol 1–15. doi: 10.1007/s00227-012-2080-9
  92. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6. doi: 10.1371/journal.pone.0028983
  93. Hüning A, Melzner F, Thomsen J, Gutowska M, Krämer L, Frickenhaus S, Rosenstiel P, Pörtner H-O, Philipp ER, Lucassen M (2012) Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar Biol 1–17. doi: 10.1007/s00227-012-1930-9
  94. Ip YK, Loong AM, Hiong KC, Wong WP, Chew SF, Reddy K, Sivaloganathan B, Ballantyne JS (2006) Light induces an increase in the pH of and a decrease in the ammonia concentration in the extrapallial fluid of the giant clam Tridacna squamosa. Phys Biochem Zool 79:656–664CrossRefGoogle Scholar
  95. Karlen DJ, Price RE, Pichler T, Garey JR (2010) Changes in benthic macrofauna associated with a shallow-water hydrothermal vent gradient in Papua New Guinea. Pac Sci 64:391–404. doi: 10.2984/64.3.391 CrossRefGoogle Scholar
  96. Kawatani Y, Nishii T (1969) Effects of pH of culture water on the growth of the Japanese pearl oyster. Bull Jpn Soc Fish Sci 35:342–350CrossRefGoogle Scholar
  97. Kimura RYO, Takami H, Ono T, Onitsuka T, Nojiri Y (2011) Effects of elevated pCO2 on the early development of the commercially important gastropod, Ezo abalone Haliotis discus hannai. Fish Oceanogr 20:357–366. doi: 10.1111/j.1365-2419.2011.00589.x CrossRefGoogle Scholar
  98. Kniprath E (1981) Ontogeny of the molluscan shell field—a review. Zool Scr 10:61–79CrossRefGoogle Scholar
  99. Knutzen J (1981) Effects of decreased pH on marine organisms. Mar Pollut Bull 12:25–29CrossRefGoogle Scholar
  100. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi: 10.3354/meps07802 CrossRefGoogle Scholar
  101. Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater CO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98CrossRefGoogle Scholar
  102. Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233. doi: 10.3354/ab00109 CrossRefGoogle Scholar
  103. Lalli CM, Gilmer R (1989) Pelagic snails. Stanford University Press, StanfordGoogle Scholar
  104. Lannig G, Eilers S, Portner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas: changes in metabolic pathways and thermal response. Mar Drugs 8:2318–2339. doi: 10.3390/md8082318 CrossRefGoogle Scholar
  105. Lavrentyev PJ, Gardner WS, Yang LY (2000) Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment–water interface. Aquat Microb Ecol 21:187–194CrossRefGoogle Scholar
  106. Lischka S, Riebesell U (2012) Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Glob Chang Biol 18:3517–3528. doi: 10.1111/gcb.12020 CrossRefGoogle Scholar
  107. Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences 8:919–932. doi: 10.5194/bg-8-919-2011 CrossRefGoogle Scholar
  108. Liu WG, He MX (2012) Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chin J Oceanol Limnol 30:206–211. doi: 10.1007/s00343-012-1067-1 CrossRefGoogle Scholar
  109. Loosanoff VL, Tommers FD (1947) Effect of low pH upon rate of water pumping of oysters, Ostrea virginica. Anat Rec 99:668–669Google Scholar
  110. Lopez IR, Kalman J, Vale C, Blasco J (2010) Influence of sediment acidification on the bioaccumulation of metals in Ruditapes philippinarum. Environ Sci Pollut Res 17:1519–1528. doi: 10.1007/s11356-010-0338-7 CrossRefGoogle Scholar
  111. Maas AE, Wishner KF, Seibel BA (2012) Metabolic suppression in thecosomatous pteropods as an effect of low temperature and hypoxia in the eastern tropical North Pacific. Mar Biol 159:1955–1967. doi: 10.1007/s00227-012-1982-x CrossRefGoogle Scholar
  112. Mackas DL, Galbraith MD (2011) Pteropod time-series from the NE Pacific. ICES J Mar Sci. doi: 10.1093/icesjms/fsr163 Google Scholar
  113. Malone PG, Dodd JR (1967) Temperature and salinity effects on calcification rate in Mytilus edulis and its paleoecological implications. Limnol Oceanogr 12:432–436CrossRefGoogle Scholar
  114. Manno C, Morata N, Primicerio R (2012) Limacina retroversa’s response to combined effects of ocean acidification and sea water freshening. Estuar Coast Shelf Sci 113:163–171. doi: 10.1016/j.ecss.2012.07.019 CrossRefGoogle Scholar
  115. Marchant HK, Calosi P, Spicer JI (2010) Short-term exposure to hypercapnia does not compromise feeding, acid–base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damage. J Mar Biol Assoc UK 90:1379–1384. doi: 10.1017/S0025315410000457 CrossRefGoogle Scholar
  116. Marin F, Luquet G (2004) Molluscan shell proteins. CR Palevol 3:469–492. doi: 10.1016/j.crpv.2004.07.009 CrossRefGoogle Scholar
  117. Marshall DJ, Santos JH, Leung KMY, Chak WH (2008) Correlations between gastropod shell dissolution and water chemical properties in a tropical estuary. Mar Environ Res 66:422–429. doi: 10.1016/j.marenvres.2008.07.003 CrossRefGoogle Scholar
  118. Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol 15:2089–2100. doi: 10.1111/j.1365-2486.2009.01874.x CrossRefGoogle Scholar
  119. Martin S, Thouzeau G, Chauvaud L, Jean F, Guerin L, Clavier J (2006) Respiration, calcification, and excretion of the invasive slipper limpet, Crepidula fornicata L.: implications for carbon, carbonate, and nitrogen fluxes in affected areas. Limnol Oceanogr 51:1996–2007CrossRefGoogle Scholar
  120. Martin S, Thouzeau G, Richard M, Chauvaud L, Jean F, Clavier J (2007) Benthic community respiration in areas impacted by the invasive mollusk Crepidula fornicata. Mar Ecol Prog Ser 347:51–60CrossRefGoogle Scholar
  121. Matozzo V, Chinellato A, Munari M, Finos L, Bressan M, Marin MG (2012) First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS ONE 7:e33820. doi: 10.1371/journal.pone.0033820 CrossRefGoogle Scholar
  122. May SP, Burkholder JM, Shumway SE, Hegaret H, Wikfors GH, Frank D (2010) Effects of the toxic dinoflagellate Alexandrium monilatum on survival, grazing and behavioral response of three ecologically important bivalve molluscs. Harmful Algae 9:281–293. doi: 10.1016/j.hal.2009.11.005 CrossRefGoogle Scholar
  123. McClintock JB, Angus RA, McDonald MR, Amsler CD, Catledge SA, Vohra YK (2009) Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarct Sci 21:449–456. doi: 10.1017/s0954102009990198 CrossRefGoogle Scholar
  124. McElhany P, Shallin Busch D (2012) Appropriate pCO2 treatments in ocean acidification experiments. Mar Biol 1–6. doi: 10.1007/s00227-012-2052-0
  125. Melzner F, Gutowska MA, Hu M, Stumpp M (2009) Acid-base regulatory capacity and associated proton extrusion mechanisms in marine invertebrates: an overview. Comp Biochem Physiol Mol Integr Physiol 153A:S80. doi: 10.1016/j.cbpa.2009.04.056 CrossRefGoogle Scholar
  126. Melzner F, Stange P, Trübenbach K, Thomsen J, Casties I, Panknin U, Gorb SN, Gutowska MA (2011) Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 6:e24223. doi: 10.1371/journal.pone.0024223 CrossRefGoogle Scholar
  127. Metzger R, Sartoris FJ, Langenbuch M, Pörtner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32:144–151CrossRefGoogle Scholar
  128. Michaelidis B, Ouzounis C, Paleras A, Portner HO (2005) Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118CrossRefGoogle Scholar
  129. Miller DC, Geider RJ, MacIntyre HL (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. 2. Role in sediment stability and shallow-water food webs. Estuaries 19:202–212CrossRefGoogle Scholar
  130. Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009) Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4:e5661. doi: 10.1371/journal.pone.0005661 CrossRefGoogle Scholar
  131. Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93:9657–9660CrossRefGoogle Scholar
  132. Mount AS, Wheeler AP, Paradkar RP, Snider D (2004) Hemocyte-mediated shell mineralization in the Eastern oyster. Science 304:297–300CrossRefGoogle Scholar
  133. Munday PL, Crawley NE, Nilsson GE (2009) Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Mar Ecol Prog Ser 388:235–242CrossRefGoogle Scholar
  134. Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Colfen H (2005) Amorphous layer around aragonite platelets in nacre. Proc Natl Acad Sci USA 102:12653–12655. doi: 10.1073/pnas.0502577102 CrossRefGoogle Scholar
  135. Navarro JM, Torres R, Acuna K, Duarte C, Manriquez PH, Lardies M, Lagos NA, Vargas C, Aguilera V (2013) Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90:1242–1248. doi: 10.1016/j.chemosphere.2012.09.063 CrossRefGoogle Scholar
  136. Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61Google Scholar
  137. Newell RIE, Koch EW (2004) Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 27:793–806CrossRefGoogle Scholar
  138. Nielsen MV (1988) The effect of temperature on the shell length growth of juvenile Mytilus edulis L. J Exp Mar Biol Ecol 123:227–234CrossRefGoogle Scholar
  139. Nienhuis S, Palmer AR, Harley CDG (2010) Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proc R Soc B Biol Sci 277:2553–2558. doi: 10.1098/rspb.2010.0206 CrossRefGoogle Scholar
  140. Norling P, Kautsky N (2007) Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Mar Ecol Prog Ser 351:163–175CrossRefGoogle Scholar
  141. Ohman MD, Lavaniegos BE, Townsend AW (2009) Multi-decadal variations in calcareous holozooplankton in the California Current System: Thecosome pteropods, heteropods, and foraminifera. Geophys Res Lett 36:L18608. doi: 10.1029/2009gl039901 CrossRefGoogle Scholar
  142. Orr JC (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 41–66Google Scholar
  143. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  144. Parker LM, Ross PM, O’Connor WA (2009) The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob Chang Biol 15:2123–2136. doi: 10.1111/j.1365-2486.2009.01895.x CrossRefGoogle Scholar
  145. Parker LM, Ross PM, O’Connor WA (2010) Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol 157:2435–2452. doi: 10.1007/s00227-010-1508-3 CrossRefGoogle Scholar
  146. Parker LM, Ross PM, O’Connor WA (2011) Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar Biol 158:689–697. doi: 10.1007/s00227-010-1592-4 CrossRefGoogle Scholar
  147. Parker LM, Ross PM, O’Connor WA, Borysko L, Raftos DA, Pörtner H-O (2012) Adult exposure influences offspring response to ocean acidification in oysters. Glob Chang Biol (in press). doi: 10.1111/j.1365-2486.2011.02520.x
  148. Peperzak L, Poelman M (2008) Mass mussel mortality in The Netherlands after a bloom of Phaeocystis globosa (prymnesiophyceae). J Sea Res 60:220–222. doi: 10.1016/j.seares.2008.06.001 CrossRefGoogle Scholar
  149. Pipe RK, Coles JA (1995) Environmental contaminants influencing immune function in marine bivalve mollusks. Fish Shellfish Immunol 5:581–595CrossRefGoogle Scholar
  150. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692CrossRefGoogle Scholar
  151. Pörtner HO, Langenbuch M, Reipschlager A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718. doi: 10.1007/s10872-004-5763-0 CrossRefGoogle Scholar
  152. Provoost P, van Heuven S, Soetaert K, Laane RWPM, Middelburg JJ (2010) Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences 7:3869–3878. doi: 10.5194/bg-7-3869-2010 CrossRefGoogle Scholar
  153. Range P, Chícharo MA, Ben-Hamadou R, Piló D, Matias D, Joaquim S, Oliveira AP, Chícharo L (2011) Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: variable responses to ocean acidification at local scales? J Exp Mar Biol Ecol 396:177–184CrossRefGoogle Scholar
  154. Range P, Piló D, Ben-Hamadou R, Chícharo MA, Matias D, Joaquim S, Oliveira AP, Chícharo L (2012) Seawater acidification by CO2 in a coastal lagoon environment: effects on life history traits of juvenile mussels Mytilus galloprovincialis. J Exp Mar Biol Ecol 424–425:89–98CrossRefGoogle Scholar
  155. Reuter KE, Lotterhos KE, Crim RN, Thompson CA, Harley CDG (2011) Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus. Glob Chang Biol 17:163–171. doi: 10.1111/j.1365-2486.2010.02216.x CrossRefGoogle Scholar
  156. Reynaud S, Leclercq N, Riomaine-Lioud S, Ferrier-Pagès C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668CrossRefGoogle Scholar
  157. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134. doi: 10.1130/g30210a.1 CrossRefGoogle Scholar
  158. Ringwood AH, Keppler CJ (2002) Water quality variation and clam growth: is pH really a non-issue in estuaries? Estuaries 25:901–907CrossRefGoogle Scholar
  159. Roberts D, Howard WR, Moy AD, Roberts JL, Trull TW, Bray SG, Hopcroft RR (2011) Interannual pteropod variability in sediment traps deployed above and below the aragonite saturation horizon in the Sub-Antarctic Southern Ocean. Polar Biol 34:1739–1750. doi: 10.1007/s00300-011-1024-z CrossRefGoogle Scholar
  160. Rodolfo-Metalpa R, Houlbreque F, Tambutte E, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso JP, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Chang 1:308–312CrossRefGoogle Scholar
  161. Roger LM, Richardson AJ, McKinnon AD, Knott B, Matear R, Scadding C (2012) Comparison of the shell structure of two tropical Thecosomata (Creseis acicula and Diacavolinia longirostris) from 1963 to 2009: potential implications of declining aragonite saturation. ICES J Mar Sci 69:465–474. doi: 10.1093/icesjms/fsr171 CrossRefGoogle Scholar
  162. Rothschild BJ, Ault JS, Goulletquer P, Heral M (1994) Decline of the Chesapeake Bay oyster population—a century of habitat destruction and overfishing. Mar Ecol Prog Ser 111:29–39CrossRefGoogle Scholar
  163. Saha A, Jana TK (1999) Biocalcification of aragonite by tellinid bivalve Macoma birmanica (Philippi) on the tidal mudflat in the Sundarban mangrove forest, north-east coast of India. Ind J Mar Sci 28:404–407Google Scholar
  164. Salisbury J, Green M, Hunt C, Campbell J (2008) Coastal acidification by rivers: a new threat to shellfish? Eos Trans AGU 89:513CrossRefGoogle Scholar
  165. Schalkhausser B, Bock C, Stemmer K, Brey T, Pörtner H-O, Lannig G (2012) Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway. Mar Biol 1–12. doi: 10.1007/s00227-012-2057-8
  166. Schöne BR, Tanabe K, Dettman DL, Sato S (2003) Environmental controls on shell growth rates and δ18O of the shallow marine bivalve mollusk Phacosoma japonicum in Japan. Mar Biol 142:473–485. doi: 10.1007/s00227-002-0970-y Google Scholar
  167. Seibel BA, Walsh PJ (2003) Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol 206:641–650. doi: 10.1242/jeb.00141 CrossRefGoogle Scholar
  168. Seibel BA, Maas AE, Dierssen HM (2012) Energetic plasticity underlies a variable response to ocean acidification in the pteropod, Limacina helicina antarctica. PLoS ONE 7. doi: 10.1371/journal.pone.0030464
  169. Shirayama Y, Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res Oceans 110:C09S08. doi: 10.1029/2004jc002618
  170. Sindermann CJ (1990) Principal diseases of marine fish and shellfish. Vol II. Diseases of marine shellfish. Academic Press, San DiegoGoogle Scholar
  171. Smith SV (1972) Production of calcium carbonate on the mainland shelf of southern California. Limnol Oceanogr 17:28–41CrossRefGoogle Scholar
  172. Smith SV, Key GS (1975) Carbon dioxide and metabolism in marine environments. Limnol Oceanogr 20:493–495CrossRefGoogle Scholar
  173. Steinacher M, Joos F, Frölicher TL, Plattner GK, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533CrossRefGoogle Scholar
  174. Sunday JM, Crim RN, Harley CDG, Hart MW (2011) Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6. doi: 10.1371/journal.pone.0022881
  175. Suzuki Y, Kojima S, Watanabe H, Suzuki M, Tsuchida S, Nunoura T, Hirayama H, Takai K, Nealson KH, Horikoshi K (2006) Single host and symbiont lineages of hydrothermalvent gastropods Ifremeria nautilei (Provannidae): biogeography and evolution. Mar Ecol Prog Ser 315:167–175CrossRefGoogle Scholar
  176. Talmage SC, Gobler CJ (2009) The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnol Oceanogr 54:2072–2080CrossRefGoogle Scholar
  177. Talmage SC, Gobler CJ (2010) Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc Natl Acad Sci USA 107:17246–17251. doi: 10.1073/pnas.0913804107 CrossRefGoogle Scholar
  178. Talmage SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic bivalves. PLoS ONE 6:e26941CrossRefGoogle Scholar
  179. Talmage SC, Gobler CJ (2012) Effects of CO2 and the harmful alga Aureococcus anophagefferens on growth and survival of oyster and scallop larvae. Mar Ecol Prog Ser 464:121–134. doi: 10.3354/meps09867 CrossRefGoogle Scholar
  180. Thiyagarajan V, Ko GWK (2012) Larval growth response of the Portuguese oyster (Crassostrea angulata) to multiple climate change stressors. Aquaculture 370–371:90–95. doi: 10.1016/j.aquaculture.2012.09.025 CrossRefGoogle Scholar
  181. Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157:2667–2676. doi: 10.1007/s00227-010-1527-0 CrossRefGoogle Scholar
  182. Thomsen J, Gutowska MA, Saphorster J, Heinemann A, Trubenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Kortzinger A, Wahl M, Melzner F (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:3879–3891. doi: 10.5194/bg-7-3879-2010 CrossRefGoogle Scholar
  183. Timmins-Schiffman E, O’Donnell M, Friedman C, Roberts S (2012) Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar Biol 1–10. doi: 10.1007/s00227-012-2055-x
  184. Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sokolova IM (2011) Proteomic response to elevated pCO2 level in Eastern oysters, Crassostrea virginica: evidence for oxidative stress. J Exp Biol 214:1836–1844. doi: 10.1242/jeb.055475 CrossRefGoogle Scholar
  185. Tunnicliffe V, Davies KTA, Butterfield DA, Embley RW, Rose JM, Chadwick WW (2009) Survival of mussels in extremely acidic waters on a submarine volcano. Nat Geosci 2:344–348. doi: 10.1038/ngeo500 CrossRefGoogle Scholar
  186. Van Colen C, Debusschere E, Braeckman U, Van Gansbeke D, Vincx M (2012) The early life history of the clam Macoma balthica in a high CO2 world. PLoS ONE 7:e44655. doi: 10.1371/journal.pone.0044655 CrossRefGoogle Scholar
  187. Waldbusser GG, Bergschneider H, Green MA (2010) Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. Mar Ecol Prog Ser 417:171–182. doi: 10.3354/meps08809 CrossRefGoogle Scholar
  188. Waldbusser GG, Steenson RA, Green MA (2011a) Oyster shell dissolution rates in estuarine waters: effects of pH and shell legacy. J Shellfish Res 30:659–669. doi: 10.2983/035.030.0308 CrossRefGoogle Scholar
  189. Waldbusser GG, Voigt EP, Bergschneider H, Green MA, Newell RIE (2011b) Biocalcification in the Eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries Coast 34:221–231. doi: 10.1007/s12237-010-9307-0 CrossRefGoogle Scholar
  190. Waller TR (1981) Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linné. Smithson Contrib Zool 328:1–70Google Scholar
  191. Walther K, Sartoris FJ, Bock C, Pörtner HO (2009) Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences 6:2207–2215CrossRefGoogle Scholar
  192. Watson S-A, Southgate PC, Tyler PA, Peck LS (2009) Early larval development of the Sydney Rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. J Shellfish Res 28:431–437. doi: 10.2983/035.028.0302 CrossRefGoogle Scholar
  193. Watson SA, Peck LS, Tyler PA, Southgate PC, Tan KS, Day RW, Morley SA (2012a) Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation: implications for global change and ocean acidification. Glob Chang Biol 18:3026–3038. doi: 10.1111/j.1365-2486.2012.02755.x CrossRefGoogle Scholar
  194. Watson SA, Southgate PC, Miller GM, Moorhead JA, Knauer J (2012b) Ocean acidification and warming reduce juvenile survival of the fluted giant clam, Tridacna squamosa. Molluscan Res 32:177–180Google Scholar
  195. Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29. doi: 10.2113/0540001 CrossRefGoogle Scholar
  196. Weiner S, Traub W (1984) Macromolecules in mollusk shells and their functions in biomineralization. Philos Trans R Soc Lond Ser B Biol Sci 304:425–434CrossRefGoogle Scholar
  197. Welladsen HM, Southgate PC, Heimann K (2010) The effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae). Molluscan Res 30:125–130Google Scholar
  198. Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 179–215Google Scholar
  199. Wicks LC, Roberts JM (2012) Benthic invertebrates in a high-CO2 world. In: Gibson RN, Atkinson RJA, Gordon JDM, Hughes RN (eds) Oceanography and marine biology: an annual review, vol 50, pp 127–187Google Scholar
  200. Wilson SP, Hyne RV (1997) Toxicity of acid-sulfate soil leachate and aluminium to embryos of the Sydney rock oyster. Ecotoxicol Environ Saf 37:30–36Google Scholar
  201. Winter JE (1978) Review on knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13:1–33. doi: 10.1016/0044-8486(78)90124-2 CrossRefGoogle Scholar
  202. Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA 105:18848–18853. doi: 10.1073/pnas.0810079105 CrossRefGoogle Scholar
  203. Yates KK, Halley RB (2006) Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay. Estuaries Coast 29:24–39Google Scholar
  204. Zippay ML, Hofmann GE (2010) Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens). J Shellfish Res 29:429–439. doi: 10.2983/035.029.0220 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frédéric Gazeau
    • 1
    • 2
    Email author
  • Laura M. Parker
    • 3
    Email author
  • Steeve Comeau
    • 4
  • Jean-Pierre Gattuso
    • 1
    • 2
  • Wayne A. O’Connor
    • 5
  • Sophie Martin
    • 6
    • 7
  • Hans-Otto Pörtner
    • 8
  • Pauline M. Ross
    • 3
  1. 1.Laboratoire d’Océanographie de VillefrancheCNRS-INSUVillefranche-sur-Mer CedexFrance
  2. 2.Université Pierre et Marie Curie-Paris 6, Observatoire Océanologique de VillefrancheVillefranche-sur-Mer CedexFrance
  3. 3.School of Natural Sciences, Ecology and Environment Research Group, College of Health and ScienceUniversity of Western SydneySydneyAustralia
  4. 4.Department of BiologyCalifornia State UniversityNorthridgeUSA
  5. 5.Industry and Investment NSWPort Stephens Fisheries CentreTaylors BeachAustralia
  6. 6.Laboratoire Adaptation & Diversité du Milieu MarinCNRS-INSURoscoffFrance
  7. 7.Laboratoire Adaptation & Diversité du Milieu MarinUniversité Pierre et Marie CurieRoscoffFrance
  8. 8.Alfred-Wegener-Institut für Polar-und MeeresforschungÖkophysiologie und ÖkotoxikologieBremerhavenGermany

Personalised recommendations