Skip to main content
Log in

Vacuolar Na+/H+ antiporter from barley: identification and response to salt stress

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

One of the protective mechanisms used by plants to survive under conditions of salt stress caused by high NaCl concentration is the removal of Na+ from the cytoplasm. This mechanism involves a number of Na+/H+-antiporter proteins that are localized in plant plasma and vacuolar membranes. Due to the driving force of the electrochemical H+ gradient created by membrane H+-pumps (H+-ATPases and vacuolar H+-pyrophosphatases), Na+/H+-antiporters extrude sodium ions from the cytoplasm in exchange for protons. In this study, we have identified the gene for the barley vacuolar Na+/H+-antiporter HvNHX2 using the RACE (rapid amplification of cDNA ends)-PCR (polymerase chain reaction) technique. It is shown that the identified gene is expressed in roots, stems, and leaves of barley seedlings and that it presumably encodes a 59.6 kD protein composed of 546 amino acid residues. Antibodies against the C-terminal fragment of HvNHX2 were generated. It is shown that the quantity of HvNHX2 in tonoplast vesicles isolated from roots of barley seedlings remains the same, whereas the rate of Na+/H+ exchange across these membranes increases in response to salt stress. The 14-3-3-binding motif Lys-Lys-Glu-Ser-His-Pro (371–376) was detected in the HvNHX2 amino acid sequence, which is suggestive of possible involvement of the 14-3-3 proteins in the regulation of HvNHX2 function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bohnert, H. J., Nelson, D. E., and Jensen, R. G. (1995) Plant Cell, 7, 1099–1111.

    Article  CAS  PubMed  Google Scholar 

  2. Blumwald, E., Aharon, G. S., and Apse, M. P. (2000) Biochim. Biophys. Acta, 1465, 140–151.

    Google Scholar 

  3. Epstein, E. (1998) Science, 280, 1906–1907.

    Article  CAS  PubMed  Google Scholar 

  4. Bressan, R. A., Hasegava, P. M., and Pardo, J. M. (1998) Trends Plant Sci., 3, 411–412.

    Google Scholar 

  5. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., and Bohnert, H. J. (2000) Annu. Rev. Plant Mol. Plant Physiol., 51, 463–499.

    Google Scholar 

  6. Liu, J., and Zhu, J. K. (1998) Science, 280, 1943–1945.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, J., Ishitani, M., Halfter, U., Kim, C. S., and Zhu, J. K. (2000) Proc. Natl. Acad. Sci. USA, 97, 3730–3734.

    Google Scholar 

  8. Shi, H., Ishitani, M., Wu, S.-J., Kim, C.-S., and Zhu, J. K. (2000) Proc. Natl. Acad. Sci. USA, 97, 6896–6901.

    Google Scholar 

  9. Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., and Fink, G. R. (2001) Proc. Natl. Acad. Sci. USA, 98, 11444–11449.

    Google Scholar 

  10. Apse, M. P., Aharon, G. S., Snedden, W. A., and Blumwald, E. (1999) Science, 285, 1256–1258.

    Google Scholar 

  11. Zhang, H. X., and Blumwald, E. (2001) Nat. Biotechnol., 19, 765–768.

    Google Scholar 

  12. Zhang, H. X., Hodson, J. N., Williams, J. P., and Blumwald, E. (2001) Proc. Natl. Acad. Sci. USA, 98, 12832–12836.

    Google Scholar 

  13. Maeshima, M., and Yoshida, S. (1989) J. Biol. Chem., 264, 20068–20073.

    Google Scholar 

  14. Shan’ko, A. V., and Babakov, A. B. (2002) Fiziol. Rast., 49, 847–853.

    Google Scholar 

  15. Palmgren, M. G. (1991) Analyt. Biochem., 192, 316–321.

    Google Scholar 

  16. Clerc, S., and Barenholz, Y. (1998) Analyt. Biochem., 259, 104–111.

    Google Scholar 

  17. Counillon, L., Franchi, A., and Pouyssegur, J. (1993) Proc. Natl. Acad. Sci. USA, 90, 4508–4512.

    Google Scholar 

  18. Sehnke, P. C., Rosenquist, M., Alsterfjord, M., DeLille, J., Sommarin, M., Larsson, C., and Ferl, R. J. (2002) Plant. Mol. Biol., 50, 1011–1018.

    Google Scholar 

  19. Li, X., Liu, Y., Kay, C. M., Muller-Esterl, W., and Fliegel, L. (2003) Biochemistry, 42, 7448–7456.

    Google Scholar 

  20. Counillion, L., and Pouysseger, J. (2000) J. Biol. Chem., 275, 1–4.

    Google Scholar 

  21. Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M., and Pardo, J. M. (2002) Plant J., 30, 529–539.

    Google Scholar 

  22. Venema, K., Quintero, F. J., Pardo, J. M., and Donaire, J. P. (2002) J. Biol. Chem., 277, 2413–2418.

    Google Scholar 

  23. Venema, K., Belver, A., Marin-Manzano, M. C., Rodriguez-Rosales, M. P., and Donaire, J. P. (2003) J. Biol. Chem., 278, 22453–22459.

    Google Scholar 

  24. Orlowski, J., and Grinstein, S. (1997) J. Biol. Chem., 272, 22373–22376.

    Google Scholar 

  25. Nass, R., and Rao, R. (1998) J. Biol. Chem., 273, 21054–21060.

    Google Scholar 

  26. Bowers, K., Levi, B. P., Patel, F. I., and Stevens, T. H. (2000) Biochim. Biophys. Acta, 1465, 140–151.

    Google Scholar 

  27. Hamada, A., Shono, M., Xia, T., Ohta, M., Hayashi, Y., Tanaka, A., and Hayakawa, T. (2001) Plant Mol. Biol., 46, 35–42.

    Google Scholar 

  28. Xia, T., Apse, M. P., Aharon, G. S., and Blumwald, E. (2002) Physiol. Plantarum, 116, 206–212.

    Google Scholar 

  29. Matsumoto, H., and Chung, G. C. (1988) Plant Cell Physiol., 29, 1133–1140.

    Google Scholar 

  30. DuPont, F. M. (1992) in Transport and Receptor Proteins of Plant Membranes (Cooke, D. T., and Clarkson, D. T., eds.) Plenum, New York, pp. 91–100.

    Google Scholar 

  31. Mariaux, J.-B., Fisher-Schliebs, E., Luttge, U., and Ratajczak, R. (1997) Protoplasma, 196, 181–189.

    Google Scholar 

  32. Garbarino, J., and DuPont, F. M. (1989) Plant Physiol., 89, 1–4.

    Google Scholar 

  33. Fukuda, A., Yazaki, Y., Ishikawa, T., Koike, S., and Tanaka, Y. (1988) Plant Cell Physiol., 39, 196–201.

    Google Scholar 

  34. Ratajczak, R. (2000) Biochim. Biophys. Acta, 1465, 17–36.

    Google Scholar 

  35. Fukuda, A., Chiba, K., Maeda, M., Nakamura, A., Maeshima, M., and Tanaka, Y. (2004) J. Exp. Botany, 55, 585–594.

    Google Scholar 

  36. Lehoux, S., Abe, Ji., Florian, J. A., and Berk, B. C. (2001) J. Biol. Chem., 276, 15794–15780.

    Google Scholar 

  37. Yamaguchi, T., Apse, M. P., Shi, H., and Blumwald, E. (2003) Proc. Natl. Acad. Sci. USA, 100, 12510–12515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Babakov.

Additional information

Translated from Biokhimiya, Vol. 70, No. 1, 2005, pp. 123–132. Original Russian Text Copyright © 2005 by Vasekina, Yershov, Reshetova, Tikhonova, Lunin, Trofimova, Babakov. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-116, December 5, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasekina, A.V., Yershov, P.V., Reshetova, O.S. et al. Vacuolar Na+/H+ antiporter from barley: identification and response to salt stress. Biochemistry (Moscow) 70, 101–107 (2005). https://doi.org/10.1007/PL00021768

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00021768

Key words

Navigation