Skip to main content
Log in

Spatial Coordination of Chloroplast and Plasma Membrane Activities in Chara Cells and Its Disruption through Inactivation of 14-3-3 Proteins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In Chara corallina cells exposed to continuous light, external pH (pHo) and photosystem II (PSII) photochemical yield show correlated banding patterns. Photosynthetic activity is low in cell regions producing alkaline zones and high in the acid regions. We addressed the question whether (and how) photosynthetic activity and plasma membrane (PM) H+-pumping and H+-conductance are coupled in the different bands. First, PM H+-pump activity was stimulated with fusicoccin. This resulted in a more acidic pH in the acid bands without disturbing the correlation of photosynthetic electron transport and H+ fluxes across the PM. Next, H+-pump activity was reduced through microinjection of a phosphorylated peptide matching the canonical 14-3-3 binding motif RSTpSTP in the acid cell region. Microinjection induced a rapid (~5 min) rise in pHo by ca. 1.0 unit near the injection site, whereas the injection of the non-phosphorylated peptide had no effect. This pH rise confirms the supposed inhibition of the H+-pump upon the detachment of 14-3-3 proteins from the H+-ATPase. However, the PSII yield in the cell regions corresponding to the new alkaline peak remained high, which violated the normal inverse relations between the pHo and PSII photochemical yield. We conclude that the injection of the competitive inhibitor of the H+ATPase disrupts the balanced operation of PM H+-transport and photosynthetic electron flow and promotes electron flow through alternative pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NR:

nitrate reductase

NR-C:

non-phosphorylated peptide matching the 14-3-3 interaction domain in barley nitrate reductase

NR-P:

a similar peptide containing phosphorylated serine

pHo :

external pH near the cell surface

PM:

plasma membrane

PSII:

photosystem II

ΔF/F m :

effective quantum yield of PS II photochemistry

REFERENCES

  1. Tominaga, M., Kinoshita, T., and Shimazaki, K. (2001) Plant Cell Physiol., 42, 795–802.

    Google Scholar 

  2. Goh, C.-H., Dietrich, P., Steinmeyer, R., Schreiber, U., Nam, H.-G., and Hedrich, R. (2002) Plant J., 32, 623–630.

    Google Scholar 

  3. Serrano, E. E., Zeiger, E., and Hagiwara, S. (1988) Proc. Natl. Acad. Sci. USA, 85, 436–440.

    Google Scholar 

  4. Vanselow, K. H., and Hansen, U.-P. (1989) J. Membr. Biol., 110, 175–187.

    Google Scholar 

  5. Bulychev, A. A., and Vredenberg, W. J. (1995) Physiol. Plant., 94, 64–70.

    Google Scholar 

  6. Plieth, C., Sattelmacher, B., and Hansen, U.-P. (1998) Planta, 207, 52–59.

    Google Scholar 

  7. Plieth, C., Tabrizi, H., and Hansen, U.-P. (1994) Physiol. Plant., 91, 205–211.

    Google Scholar 

  8. Van Ginkel, L. C., and Prins, H. B.A. (1998) Can. J. Bot., 76, 1018–1024.

    Google Scholar 

  9. Baker, N. R., Oxborough, R., Lawson, T., and Morison, J. I. L. (2001) J. Exp. Bot., 52, 615–621.

    Google Scholar 

  10. Lucas, W. J., and Nuccitelli, R. (1980) Planta, 150, 120–131.

    Google Scholar 

  11. Fisahn, J. M., and Lucas, W. J. (1995) J. Membr. Biol., 147, 275–281.

    Google Scholar 

  12. Bulychev, A. A., Polezhaev, A. A., Zykov, S. V., Pljusnina, T. Yu., Riznichenko, G. Yu., Rubin, A. B., Jantoss, W., Zykov, V. S., and Mull er, S. C. (2001) J. Theor. Biol., 212, 275–294.

    Google Scholar 

  13. Bulychev, A. A., Cherkashin, A. A., Rubin, A. B., Vredenberg, W. J., Zykov, V. S., and Muller, S. C. (2001) Bioelectrochemistry, 53, 225–232.

    Google Scholar 

  14. Bulychev, A. A., and Vredenberg, W. J. (2003) Planta, 218, 143–151.

    Google Scholar 

  15. Hansen, U.-P., Moldaenke, C., Tabrizi, H., and Ramm, D. (1993) Plant Cell Physiol., 34, 681–695.

    Google Scholar 

  16. Smith, P. J. S., and Walker, N. A. (1985) J. Membr. Biol., 83, 193–205.

    Google Scholar 

  17. Yao, X., and Bisson, M. A. (1993) Plant Physiol., 103, 197–203.

    Google Scholar 

  18. Baunsgaard, L., Fuglsang, A. T., Jahn, T., Korthout, H., De Boer, A. H., and Palmgren, M. G. (1998) Plant J., 13, 661–671.

    Google Scholar 

  19. Kerkeb, L., Venema, K., Donaire, J. P., and Rodriguez-Rosales, M. P. (2002) Physiol. Plant., 116, 37–41.

    Google Scholar 

  20. Sehnke, P. C., DeLille, J. M., and Ferl, R. J. (2002) Plant Cell, 14, S339-S354.

    CAS  PubMed  Google Scholar 

  21. Bunney, T. D., van den Wijngaard, P. W. J., and De Boer, A. H. (2002) Plant Mol. Biol., 50, 1041–1051.

    Google Scholar 

  22. Tzivion, G., and Avruch, J. (2002) J. Biol. Chem., 277, 3061–3064s.

    Google Scholar 

  23. Fuglsang, A. T., Visconti, S., Drumm, K., Jahn, T., Stensballe, A., Mattei, B., Jensen, O. N., Aducci, P., and Palmgren, M. G. (1999) J. Biol. Chem., 274, 36774–36780.

    Google Scholar 

  24. Kinoshita, T., and Shimazaki, K. (1999) EMBO J., 18, 5548–5558.

    Google Scholar 

  25. Kinoshita, T., and Shimazaki, K. (2001) Plant Cell Physiol., 42, 424–432.

    Google Scholar 

  26. Moorhead, G., Douglas, P., Cotelle, V., Harthill, J., Morrice, N., Meek, S., Deiting, U., Stitt, M., Scarabel, M., Aitken, A., and MacKintosh, C. (1999) Plant J., 18, 1–12.

    Google Scholar 

  27. Ichimura, T., Wakamiya-Tsuruta, A., Itagaki, C., Taoka, M., Hayano, T., Natsume, T., and Isobe, T. (2002) Biochemistry, 41, 5566–5572.

    Google Scholar 

  28. Bunney, T. D., van Walraven, H. S., and De Boer, A. H. (2001) Proc. Natl. Acad. Sci. USA, 98, 4249–4254.

    Google Scholar 

  29. Booij, P. P., Roberts, M. R., Vogelzang, S. A., Kraayenhof, R., and De Boer, A. H. (1999) Plant J., 20, 673–683.

    Google Scholar 

  30. Goh, C.-H., Schreiber, U., and Hedrich, R. (1999) Plant Cell Environ., 22, 1057–1070.

    Google Scholar 

  31. Shimmen, T., and Yamamoto, A. (2002) Plant Cell Physiol., 43, 980–983.

    Google Scholar 

  32. De Boer, A. H. (1997) Trends Plant Sci., 2, 60–66.

    Google Scholar 

  33. Rajan, S., Preisig-Muller, R., Wischmeyer, E., Nehring, R., Hanley, P. J., Renigunta, V., Musset, B., Schlichthorl, G., Derst, C., Karschin, A., and Daut, J. (2002) J. Physiol., 545, 13–26.

    Google Scholar 

  34. MacKintosh, C., Douglas, P., and Lillo, C. (1995) Plant Physiol., 107, 1–457

    Google Scholar 

  35. Huber, S. C., MacKintosh, C., and Kaiser, W. M. (2002) Plant Mol. Biol., 50, 53–1063

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bulychev.

Additional information

Translated from Biokhimiya, Vol. 70, No. 1, 2005, pp. 68–76. Original Russian Text Copyright © 2005 by Bulychev, van den Wijngaard, de Boer. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-068, October 31, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulychev, A.A., van den Wijngaard, P.W.J. & de Boer, A.H. Spatial Coordination of Chloroplast and Plasma Membrane Activities in Chara Cells and Its Disruption through Inactivation of 14-3-3 Proteins. Biochemistry (Moscow) 70, 55–61 (2005). https://doi.org/10.1007/PL00021756

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00021756

Key words

Navigation