Optical Review

, Volume 12, Issue 2, pp 76–82 | Cite as

Binocular, Monocular and Dichoptic Pattern Masking

  • Goro Maehara
  • Ken Goryo
Vision
  • 88 Downloads

Abstract

It has been reported that a quadratic summation rule can account for threshold versus masker contrast (TvC) functions for binocular, monocular and dichoptic masking. However, the present study suggests that inputs from two eyes are summed in different ways. Foley’s model was revised to describe TvC functions for binocular, monocular and dichoptic masking. The revised model has the following two characteristics. First, the revised model receives two monocular inputs. Secondly, excitations and inhibitory signals are subjected to nonlinear transducer functions before and after summation of the monocular signals. A two-alternative forced-choice procedure was used to measure contrast thresholds for Gaussian windowed sine-wave gratings (target) in the presence of sine-wave gratings (masker). Thresholds were measured for 11 masker contrasts and the three masking conditions. It was shown that this revised model fitted the data resonably well. The revised model indicates how monocular inputs are summed in contrast processing.

Keywords

binocular vision binocular summation contrast masking detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    G. E. Legge and J. M. Foley: J. Opt. Soc. Am. 70 (1980) 1458.Google Scholar
  2. 2).
    H. R. Wilson, D. K. McFarlane and G. C. Phillips: Vision Res. 23 (1983) 873.Google Scholar
  3. 3).
    J. Ross and H. D. Speed: Proc. R. Soc. B 246 (1991) 61.Google Scholar
  4. 4).
    J. M. Foley: J. Opt. Soc. Am. A 11 (1994) 1710.Google Scholar
  5. 5).
    A. B. Watson and J. A. Solomon: J. Opt. Soc. Am. A 14 (1997) 2379.Google Scholar
  6. 6).
    J. M. Foley and C. C. Chen: Vision Res. 39 (1999) 3855.Google Scholar
  7. 7).
    T. S. Messe and D. J. Holmes: Vision Res. 42 (2002) 1113.Google Scholar
  8. 8).
    J. Nachmias and R. V. Sunsbury: Vision Res. 14 (1974) 1039.Google Scholar
  9. 9).
    C. F. Stromeyer III and S. Klein: Vision Res. 14 (1974) 1409.Google Scholar
  10. 10).
    K.-I. Naka and W. A. H. Rushton: J. Physiol. 185 (1966) 587.Google Scholar
  11. 11).
    D. J. Heeger: Visual Neurosci. 9 (1992) 181.Google Scholar
  12. 12).
    G. E. Legge: J. Opt. Soc. Am. 69 (1979) 838.Google Scholar
  13. 13).
    D. M. Levi, R. S. Harweth and E. L. Smith III: Science 206 (1979) 852.Google Scholar
  14. 14).
    J. M. Harris and A. Willis: Vision Res. 41 (2001) 873.Google Scholar
  15. 15).
    F. W. Campbell and D. G. Green: Nature 208 (1965) 191.Google Scholar
  16. 16).
    F. Thorn and R. M. Boynton: Vision Res. 14 (1974) 445.Google Scholar
  17. 17).
    G. E. Legge: Vision Res. 24 (1984) 373.Google Scholar
  18. 18).
    G. E. Legge: Vision Res. 24 (1984) 385.Google Scholar
  19. 19).
    A. I. Cogan: Vision Res. 27 (1987) 2125.Google Scholar
  20. 20).
    P. A. Anderson and J. A. Movshon: Vision Res. 29 (1989) 1115.Google Scholar
  21. 21).
    Here, we use the same symbols as Foley’s. An exception is j, which refers to the right or left eyes in the present study. Foley and Chen used j to refer to mechanisms tuned to different phases.6).Google Scholar
  22. 22).
    Actually, the outputs of linear operators are computed using convolution. This computation is somewhat complex, but can be simplified and written as eq. (3).4,6)Google Scholar
  23. 23).
    D. G. Pelli and L. Zhang: Vision Res. 31 (1991) 1337.Google Scholar
  24. 24).
    D. G. Pelli: Spatial Vis. 10 (1997) 437.Google Scholar
  25. 25).
    F. A. Wichmann and N. J. Hill: Percept. Psychophys. 63 (2001) 1293.Google Scholar
  26. 26).
    F. A. Wichmann and N. J. Hill: Percept. Psychophys. 63 (2001) 1314.Google Scholar
  27. 27).
    J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright: SIAM J. Optim. 9 (1998) 112.Google Scholar
  28. 28).
    When sensitivity parameters (SIt, SIm, and SEm) were estimated lower than 1.0, we considered them to be nearly 0.Google Scholar
  29. 29).
    U. Polat and D. Sagi: Vision Res. 33 (1993) 993.Google Scholar
  30. 30).
    U. Polat and D. Sagi: Proc. Natl. Acad. Sci. USA 91 (1994) 1206.Google Scholar
  31. 31).
    I. Ohzawa, G. C. DeAngelis and R. D. Freeman: Science 249 (1990) 1037.Google Scholar
  32. 32).
    C. C. Chen, J. M. Foley and D. H. Brainard: Vision Res. 40 (2000) 773.Google Scholar

Copyright information

© The Optical Society of Japan 2005

Authors and Affiliations

  • Goro Maehara
    • 1
  • Ken Goryo
    • 2
  1. 1.Graduate School of Science and TechnologyChiba UniversityChiba-shi, ChibaJapan
  2. 2.Faculty of LettersChiba UniversityChiba-shi, ChibaJapan

Personalised recommendations