Ecosystems

, Volume 6, Issue 5, pp 424–430 | Cite as

Ectomycorrhizal Colonization, Biomass, and Production in a Regenerating Scrub Oak Forest in Response to Elevated CO2

  • J. Adam Langley
  • Paul Dijkstra
  • Bert G. Drake
  • Bruce A. Hungate
Article

Abstract

The effects of CO2 elevation on the dynamics of fine root (FR) mass and ectomycorrhizal (EM) mass and colonization were studied in situ in a Florida scrub oak system over four years of postfire regeneration. Soil cores were taken at five dates and sorted to assess the standing crop of ectomycorrhizal and fine roots. We used ingrowth bags to estimate the effects of elevated CO2 on production of EM roots and fine roots. Elevated CO2 tended to increase EM colonization frequency but did not affect EM mass nor FR mass in soil cores (standing mass). However, elevated CO2 strongly increased EM mass and FR mass in ingrowth bags (production), but it did not affect the EM colonization frequency therein. An increase in belowground production with unchanged biomass indicates that elevated CO2 may stimulate root turnover. The CO2-stimulated increase of belowground production was initially larger than that of aboveground production. The oaks may allocate a larger portion of resources to root/mycorrhizal production in this system in elevated rather than ambient CO2.

Keywords

ectomycorrhizae fine roots ingrowth bags production turnover Quercus 

References

  1. 1.
    Agerer, R 1987Colour Atlas of Ectomycorrhizae.EinhornMunichGoogle Scholar
  2. 2.
    Brundrett, M 1994

    Scoring ectomycorrhizae.

    Brundrett, M eds. Practical methods in mycorrhiza research.Mycologue PublicationsWaterloo, Canada
    Google Scholar
  3. 3.
    Day, FP, Weber, EP, Hinkle, CR, Drake, BG 1996Effects of elevated atmospheric CO2 on fine root length and distribution in an oak–palmetto scrub ecosystem in central Florida.Global Change Biol21438Google Scholar
  4. 4.
    Diaz, S 1996Effects of elevated [CO2] at the community level mediated by root symbionts.Plant Soil18730920Google Scholar
  5. 5.
    Dijkstra, P, Hymus, G, Colavito, D, Vieglas, DA, Cundari, CM, Johnson, DP, Hungate, BA, Hinkle, CR, Drake, BG 2002Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub–oak ecosystem.Global Change Biol890103CrossRefGoogle Scholar
  6. 6.
    Dilustro, JJ, Day, FP, Drake, BG 2001Effects of elevated atmospheric CO2 on root decomposition in a scrub–oak ecosystem.Global Change Biol758190CrossRefGoogle Scholar
  7. 7.
    Dukes, JS, Hungate, BA 2002Elevated carbon dioxide and litter decomposition in California annual grasslands: which mechanisms matter?Ecosystems517183Google Scholar
  8. 8.
    Field CB. 1999. Diverse controls of carbon storage under elevated CO2: toward a synthesis. Carbon Dioxide and Environmental Stress. Google Scholar
  9. 9.
    Fitter, AH, Graves, JD, Wolfenden, J, Self, GK, Brown, TK, Bogie, D, Mansfield, TA 1997Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations.New Phytol13724755CrossRefGoogle Scholar
  10. 10.
    Fitter, AH, Heinemeyer, A, Staddon, PL 2000The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach.New Phytol14717987CrossRefGoogle Scholar
  11. 11.
    Fogel, R, Hunt, G 1983Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas fir ecosystem.Can J Forest Res1321932Google Scholar
  12. 12.
    Godbold, DL, Bernston, GM 1997Elevated atmospheric CO2 concentration changes ectomycorrhizal morphotype assemblages in Betula papyrifera.Tree Physiol1734750Google Scholar
  13. 13.
    Godbold, DL, Bernston, GM, Bazzaz, FA 1997Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2.New Phytol13743340CrossRefGoogle Scholar
  14. 14.
    Harley, JL, Smith, SA 1983Mycorrhizal Symbiosis.Academic PressNew York483Google Scholar
  15. 15.
    Hungate, BA, Holland, EA, Jackson, RB, Chapin, FSI, Mooney, HA, Field, CB 1997The fate of carbon in grasslands under carbon dioxide enrichment.Nature3885769Google Scholar
  16. 16.
    Ineichen, K, Wiemken, V, Wiemken, A 1995Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide.Plant Cell Environ187037Google Scholar
  17. 17.
    Langley, JA, Drake, BG, Hungate, BA 2002Extensive belowground carbon storage supports roots and mycorrhizae in regenerating scrub oaks.Oecologia1315428CrossRefGoogle Scholar
  18. 18.
    Norby, RJ, O’Neill, EG, Luxmoore, RJ 1986Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil.Plant Physiol82839Google Scholar
  19. 19.
    Norby, RJ, Jackson, RB 2000Root dynamics and global change: seeking an ecosystem perspective.New Phytol147312CrossRefGoogle Scholar
  20. 20.
    Norby, RJ, Cotrufo, MF, Ineson, P, O’Neill, EG, Canadell, JG 2001Elevated CO2 litter chemistry, and decomposition: a synthesis.Oecologia12715365CrossRefGoogle Scholar
  21. 21.
    Norby, RJ, O’Neill, EG, Hood, WG, Luxmoore, RJ 1987Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment.Tree Physiol320310Google Scholar
  22. 22.
    O’Neill EG, Luxmoore RJ, Norby RJ. 1987. Increases in mycorrhizal colonization and seedling growth in Pinus echinata and Quercus alba in an enriched CO2 atmosphere. 17:878–83Google Scholar
  23. 23.
    Pregitzer, KS, Zak, DR, Maziasz, J, DeForest, J, Curtis, PS, Lussenhop, J 2000Interactive effects of atmospheric CO2 and soil-N availability on fine rots of Populus tremuloides.Ecol Appl101833Google Scholar
  24. 24.
    Publicover, DA, Vogt, KA 1993A comparison of methods for estimating forest fine root production with respect to sources of error.Can J Forest Res23117986Google Scholar
  25. 25.
    Rillig, MC, Allen, MF 1999What is the role of arbuscular mycorrhizal fungi in plant-to- ecosystem responses in elevated atmospheric CO2?Mycorrhiza918CrossRefGoogle Scholar
  26. 26.
    Rillig, MC, Wright, SF, Allen, MF, Field, CF 1999Rise in carbon dioxide changes soil structure.Nature400628CrossRefGoogle Scholar
  27. 27.
    Runion, GB, Mitchell, RJ, Rogers, HH, Prior, SA, Counts, TK 1997Effects of nitrogen and water limitation and elevated CO2-on ectomycorrhiza of longleaf pine.New Phytol1376819CrossRefGoogle Scholar
  28. 28.
    Schlesinger, WH 1984

    Soil organic matter: A source of atmospheric CO2

    Woodwell, GM eds. The role Terrestrial Vegetation in the Global Carbon Cycle.WileyNew York
    Google Scholar
  29. 29.
    Schmalzer, PA, Hinkle, RA 1996Biomass and nutrients in aboveground vegetation and soils of Florida oak–saw palmetto scrub.Castanea6116893Google Scholar
  30. 30.
    Smith, SE, Read, DJ 1997Mycorrhizal Symbiosis.Academic PressSan Diego605Google Scholar
  31. 31.
    Staddon, PL 1998Insights into mycorrhizal colonisation at elevated CO2: a simple carbon partitioning model.Plant Soil20517180CrossRefGoogle Scholar
  32. 32.
    Tingey, DT, Phillips, DL, Johnson, MG, Storm, MJ, Ball, JT 1997Effects of elevated CO2 and nitrogen on fine roots dynamics and fungal growth in seedling Pinus ponderosa.Environ Exp Bot377383Google Scholar
  33. 33.
    Tingey, DT, Phillips, DL, Johnson, MG 2000Elevated CO2 and conifer roots: effects on growth life span and turnover.New Phytol14787104CrossRefGoogle Scholar
  34. 34.
    Treseder, KK, Allen, MA 2000Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition.New Phytol174189201CrossRefGoogle Scholar
  35. 35.
    Vogt, KA, Edmonds, RL, Grier, CC, Piper, SR 1980Seasonal changes in mycorrhizal and fibrous-textured root biomass in 23- and 180-year-old Pacific silver fir stands in western Washington.Can J Forest Res105239Google Scholar
  36. 36.
    Vogt, KA, Persson, H 1991

    Measuring growth and development of roots.

    Lassoie, JPHinkley, TM eds. Techniques and approaches in forest tree ecophysiology.CRC PressBoca Raton, FL477501
    Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • J. Adam Langley
    • 1
  • Paul Dijkstra
    • 1
    • 2
  • Bert G. Drake
    • 2
  • Bruce A. Hungate
    • 1
  1. 1.Department of Biological SciencesMerriam Powell Center for Environmental Research, Northern Arizona University, Box 5640, Flagstaff, Arizona 86011USA
  2. 2.Smithsonian Environmental Research Center, P.O.Box 28, Edgewater, Maryland 21037USA

Personalised recommendations