Skip to main content
Log in

Ectomycorrhizal Colonization, Biomass, and Production in a Regenerating Scrub Oak Forest in Response to Elevated CO2

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The effects of CO2 elevation on the dynamics of fine root (FR) mass and ectomycorrhizal (EM) mass and colonization were studied in situ in a Florida scrub oak system over four years of postfire regeneration. Soil cores were taken at five dates and sorted to assess the standing crop of ectomycorrhizal and fine roots. We used ingrowth bags to estimate the effects of elevated CO2 on production of EM roots and fine roots. Elevated CO2 tended to increase EM colonization frequency but did not affect EM mass nor FR mass in soil cores (standing mass). However, elevated CO2 strongly increased EM mass and FR mass in ingrowth bags (production), but it did not affect the EM colonization frequency therein. An increase in belowground production with unchanged biomass indicates that elevated CO2 may stimulate root turnover. The CO2-stimulated increase of belowground production was initially larger than that of aboveground production. The oaks may allocate a larger portion of resources to root/mycorrhizal production in this system in elevated rather than ambient CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R Agerer (1987) Colour Atlas of Ectomycorrhizae. Einhorn Munich

    Google Scholar 

  2. M Brundrett (1994) Scoring ectomycorrhizae. M Brundrett (Eds) Practical methods in mycorrhiza research. Mycologue Publications Waterloo, Canada

    Google Scholar 

  3. FP Day EP Weber CR Hinkle BG Drake (1996) ArticleTitleEffects of elevated atmospheric CO2 on fine root length and distribution in an oak–palmetto scrub ecosystem in central Florida. Global Change Biol 2 143–8

    Google Scholar 

  4. S Diaz (1996) ArticleTitleEffects of elevated [CO2] at the community level mediated by root symbionts. Plant Soil 187 309–20 Occurrence Handle1:CAS:528:DyaK2sXjtlSitbg%3D

    CAS  Google Scholar 

  5. P Dijkstra G Hymus D Colavito DA Vieglas CM Cundari DP Johnson BA Hungate CR Hinkle BG Drake (2002) ArticleTitleElevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub–oak ecosystem. Global Change Biol 8 90–103 Occurrence Handle10.1046/j.1354-1013.2001.00458.x

    Article  Google Scholar 

  6. JJ Dilustro FP Day BG Drake (2001) ArticleTitleEffects of elevated atmospheric CO2 on root decomposition in a scrub–oak ecosystem. Global Change Biol 7 581–90 Occurrence Handle10.1046/j.1354-1013.2001.00428.x

    Article  Google Scholar 

  7. JS Dukes BA Hungate (2002) ArticleTitleElevated carbon dioxide and litter decomposition in California annual grasslands: which mechanisms matter? Ecosystems 5 171–83 Occurrence Handle1:CAS:528:DC%2BD38XjtlCnurw%3D

    CAS  Google Scholar 

  8. Field CB. 1999. Diverse controls of carbon storage under elevated CO2: toward a synthesis. Carbon Dioxide and Environmental Stress.

    Google Scholar 

  9. AH Fitter JD Graves J Wolfenden GK Self TK Brown D Bogie TA Mansfield (1997) ArticleTitleRoot production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. New Phytol 137 247–55 Occurrence Handle10.1046/j.1469-8137.1997.00804.x

    Article  Google Scholar 

  10. AH Fitter A Heinemeyer PL Staddon (2000) ArticleTitleThe impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147 179–87 Occurrence Handle10.1046/j.1469-8137.2000.00680.x Occurrence Handle1:CAS:528:DC%2BD3cXms1yltL0%3D

    Article  CAS  Google Scholar 

  11. R Fogel G Hunt (1983) ArticleTitleContribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas fir ecosystem. Can J Forest Res 13 219–32 Occurrence Handle1:CAS:528:DyaL3sXktVCmurg%3D

    CAS  Google Scholar 

  12. DL Godbold GM Bernston (1997) ArticleTitleElevated atmospheric CO2 concentration changes ectomycorrhizal morphotype assemblages in Betula papyrifera. Tree Physiol 17 347–50

    Google Scholar 

  13. DL Godbold GM Bernston FA Bazzaz (1997) ArticleTitleGrowth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytol 137 433–40 Occurrence Handle10.1046/j.1469-8137.1997.00842.x Occurrence Handle1:CAS:528:DyaK1cXitVCmuw%3D%3D

    Article  CAS  Google Scholar 

  14. JL Harley SA Smith (1983) Mycorrhizal Symbiosis. Academic Press New York 483

    Google Scholar 

  15. BA Hungate EA Holland RB Jackson FSI Chapin HA Mooney CB Field (1997) ArticleTitleThe fate of carbon in grasslands under carbon dioxide enrichment. Nature 388 576–9 Occurrence Handle1:CAS:528:DyaK2sXlt1ejtbo%3D

    CAS  Google Scholar 

  16. K Ineichen V Wiemken A Wiemken (1995) ArticleTitleShoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant Cell Environ 18 703–7

    Google Scholar 

  17. JA Langley BG Drake BA Hungate (2002) ArticleTitleExtensive belowground carbon storage supports roots and mycorrhizae in regenerating scrub oaks. Oecologia 131 542–8 Occurrence Handle10.1007/s00442-002-0932-6

    Article  Google Scholar 

  18. RJ Norby EG O’Neill RJ Luxmoore (1986) ArticleTitleEffects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiol 82 83–9 Occurrence Handle1:CAS:528:DyaL28XlvFSjtbY%3D

    CAS  Google Scholar 

  19. RJ Norby RB Jackson (2000) ArticleTitleRoot dynamics and global change: seeking an ecosystem perspective. New Phytol 147 3–12 Occurrence Handle10.1046/j.1469-8137.2000.00676.x Occurrence Handle1:CAS:528:DC%2BD3cXms1ylt7w%3D

    Article  CAS  Google Scholar 

  20. RJ Norby MF Cotrufo P Ineson EG O’Neill JG Canadell (2001) ArticleTitleElevated CO2 litter chemistry, and decomposition: a synthesis. Oecologia 127 153–65 Occurrence Handle10.1007/s004420000615

    Article  Google Scholar 

  21. RJ Norby EG O’Neill WG Hood RJ Luxmoore (1987) ArticleTitleCarbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol 3 203–10

    Google Scholar 

  22. O’Neill EG, Luxmoore RJ, Norby RJ. 1987. Increases in mycorrhizal colonization and seedling growth in Pinus echinata and Quercus alba in an enriched CO2 atmosphere. 17:878–83

  23. KS Pregitzer DR Zak J Maziasz J DeForest PS Curtis J Lussenhop (2000) ArticleTitleInteractive effects of atmospheric CO2 and soil-N availability on fine rots of Populus tremuloides. Ecol Appl 10 18–33

    Google Scholar 

  24. DA Publicover KA Vogt (1993) ArticleTitleA comparison of methods for estimating forest fine root production with respect to sources of error. Can J Forest Res 23 1179–86

    Google Scholar 

  25. MC Rillig MF Allen (1999) ArticleTitleWhat is the role of arbuscular mycorrhizal fungi in plant-to- ecosystem responses in elevated atmospheric CO2? Mycorrhiza 9 1–8 Occurrence Handle10.1007/s005720050257

    Article  Google Scholar 

  26. MC Rillig SF Wright MF Allen CF Field (1999) ArticleTitleRise in carbon dioxide changes soil structure. Nature 400 628 Occurrence Handle10.1038/23168 Occurrence Handle1:CAS:528:DyaK1MXltl2ltb8%3D

    Article  CAS  Google Scholar 

  27. GB Runion RJ Mitchell HH Rogers SA Prior TK Counts (1997) ArticleTitleEffects of nitrogen and water limitation and elevated CO2-on ectomycorrhiza of longleaf pine. New Phytol 137 681–9 Occurrence Handle10.1046/j.1469-8137.1997.00865.x

    Article  Google Scholar 

  28. WH Schlesinger (1984) Soil organic matter: A source of atmospheric CO2 GM Woodwell (Eds) The role Terrestrial Vegetation in the Global Carbon Cycle. Wiley New York

    Google Scholar 

  29. PA Schmalzer RA Hinkle (1996) ArticleTitleBiomass and nutrients in aboveground vegetation and soils of Florida oak–saw palmetto scrub. Castanea 61 168–93

    Google Scholar 

  30. SE Smith DJ Read (1997) Mycorrhizal Symbiosis. Academic Press San Diego 605

    Google Scholar 

  31. PL Staddon (1998) ArticleTitleInsights into mycorrhizal colonisation at elevated CO2: a simple carbon partitioning model. Plant Soil 205 171–80 Occurrence Handle10.1023/A:1004388605110 Occurrence Handle1:CAS:528:DyaK1MXhtlGgtrc%3D

    Article  CAS  Google Scholar 

  32. DT Tingey DL Phillips MG Johnson MJ Storm JT Ball (1997) ArticleTitleEffects of elevated CO2 and nitrogen on fine roots dynamics and fungal growth in seedling Pinus ponderosa. Environ Exp Bot 37 73–83 Occurrence Handle1:CAS:528:DyaK2sXntlygtr0%3D

    CAS  Google Scholar 

  33. DT Tingey DL Phillips MG Johnson (2000) ArticleTitleElevated CO2 and conifer roots: effects on growth life span and turnover. New Phytol 147 87–104 Occurrence Handle10.1046/j.1469-8137.2000.00684.x Occurrence Handle1:CAS:528:DC%2BD3cXms1ylt7k%3D

    Article  CAS  Google Scholar 

  34. KK Treseder MA Allen (2000) ArticleTitleMycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 174 189–201 Occurrence Handle10.1046/j.1469-8137.2000.00690.x

    Article  Google Scholar 

  35. KA Vogt RL Edmonds CC Grier SR Piper (1980) ArticleTitleSeasonal changes in mycorrhizal and fibrous-textured root biomass in 23- and 180-year-old Pacific silver fir stands in western Washington. Can J Forest Res 10 523–9

    Google Scholar 

  36. KA Vogt H Persson (1991) Measuring growth and development of roots. JP Lassoie TM Hinkley (Eds) Techniques and approaches in forest tree ecophysiology. CRC Press Boca Raton, FL 477–501

    Google Scholar 

Download references

Acknowledgements

Sally Box, Graham Hymus, and Dave Johnson were instrumental in site maintenance and sample collection. Nancy Johnson, Kitty Gehring, and Samantha Chapman provided helpful advice. This study was supported by the National Science Foundation, the Smithsonian Institute, and the U.S. Department of Energy. We thank the National Aeronautical and Space Administration and the John F. Kennedy Space Center for on site assistance and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Adam Langley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langley, J., Dijkstra, P., Drake, B. et al. Ectomycorrhizal Colonization, Biomass, and Production in a Regenerating Scrub Oak Forest in Response to Elevated CO2 . Ecosystems 6, 424–430 (2003). https://doi.org/10.1007/PL00021509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00021509

Keywords

Navigation