Skip to main content
Log in

Fourier representation method for electronic structures of linear polymers

II. Linear chain of hydrogen atoms

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The Fourier representation method described in the previous paper of this series is used to make electronic structure calculations for a linear chain of equally spaced hydrogen atoms. The electronic wavefunction is assumed to be a determinant of doubly-occupied crystal orbitals of modulated-plane-wave type, built from one 1s Slater-type orbital of screening parameter ζ centered on each atom. The energy is calculated from the electrostatic zero-order Hamiltonian with exact evaluation of all Coulomb and exchange contributions, and is optimized with respect to the lattice spacing and ζ value. Good agreement with work by others is noted, indicating a near-equivalence of modulated-plane-wave and tight-binding wavefunctions for this half-filled-valence-band system. The linear chain is calculated to be far more stable than cubic three-dimensional hydrogen crystals. This fact sheds light on the unusually large calculated nearest-neighbor distances in the cubic crystals, and is related to a suggestion that under certain conditions the most stable structure for solid atomic hydrogen may be of lower symmetry than cubic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, F. E.: J. Chem. Phys.56, 4422 (1972)

    Google Scholar 

  2. Keller, H. J., ed.: Low-dimensional cooperative phenomena, NATO ASI Series, Vol. B7. New York: Plenum Press 1974

    Google Scholar 

  3. André, J. M., Ladik, J., eds.: Electronic structure of polymers and molecular crystals, NATO ASI Series, Vol. B9. New York: Plenum Press 1975

    Google Scholar 

  4. Delhalle, J., André, J. M., Delhalle, S., Pireaux, J. J., Caudano, R., Verbist, J. J.: J. Chem. Phys.60, 595 (1974)

    Google Scholar 

  5. Delhalle, J., Delhalle, S., André, J. M.: Bull. Soc. Chim. Belges83, 107 (1974)

    Google Scholar 

  6. Pireaux, J. J., Riga, J., Caudano, R., Verbist, J. J., André, J. M., Delhalle, J., Delhalle, S.: J. Electron Spectry.5, 531 (1974)

    Google Scholar 

  7. Calais, J. L.: Arkiv Fysik29, 511 (1965)

    Google Scholar 

  8. Del Re, G., Ladik, J., Biczo, G.: Phys. Rev.155, 997 (1967)

    Google Scholar 

  9. André, J. M.: J. Chem. Phys.50, 1536 (1969)

    Google Scholar 

  10. Berggren, K. F., Martino, F.: Phys. Rev.184, 484 (1969)

    Google Scholar 

  11. Kislow, D. H., McKelvey, J. M., Bender, C. F., Schaefer, H. F.: Phys. Rev. Letters32, 933 (1974)

    Google Scholar 

  12. Kertesz, M., Koller, J., Azman, A.: Theoret. Chim. Acta (Berl.)41, 89 (1976)

    Google Scholar 

  13. Harris, F. E., Monkhorst, H. J.: Phys. Rev.B2, 4400 (1970)

    Google Scholar 

  14. Harris, F. E.: Theoretical chemistry, advances and perspectives, Vol. 1, pp. 147–218, Henderson, D., Eyring, H., eds. New York: Academic Press 1975

    Google Scholar 

  15. Harris, F. E., Ref. [3], pp. 453–477.

    Google Scholar 

  16. Harris, F. E., Kumar, L., Monkhorst, H. J.: Intern. J. Quantum Chem.5S, 527 (1971)

    Google Scholar 

  17. Harris, F. E., Kumar, L., Monkhorst, H. J.: Phys. Rev.B7, 2850 (1973)

    Google Scholar 

  18. Bonham, R. A., Peacher, J. L., Cox, H. L.: J. Chem. Phys.40, 3083 (1964)

    Google Scholar 

  19. Harris, F. E., Monkhorst, H. J.: Computational methods in band theory, p. 530. Marcus, P. M., Janak, J. F., Williams, A. R., eds. New York: Plenum Press 1971

    Google Scholar 

  20. See, for example: Callaway, J.: Quantum theory of the solid state, pp. 352 ff. New York: Academic Press 1974

    Google Scholar 

  21. Abramowitz, M., Stegun, I. A.:Handbook of mathematical functions Eq. (3.6.28.). Washington: U.S. Government Printing Office 1964

    Google Scholar 

  22. Oddershede, J., Kumar, L., Monkhorst, H. J.: Intern. J. Quantum Chem.8S, 447 (1974)

    Google Scholar 

  23. Brovman, E. G., Kagan, Yu., Kholas, A.: Zh. Eksp. Teor. Fiz.61, 2429 (1971) (Soviet Physics JETP34, 1300 (1972))

    Google Scholar 

  24. Brovman, E. G., Kagan, Yu., Kholas, A.: Zh. Eksp. Teor. Fiz.62, 1492 (1972) (Soviet Physics JETP35, 1783 (1972))

    Google Scholar 

  25. Delhalle, J., Harris, F. E.: Phys. Rev. Letters39, 1340 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The previous paper of this series: Harris, F. E.: J. Chem. Phys.56, 4422 (1972) [1].

Chargé de Recherches du F.N.R.S. (Fonds National Belge de la Recherche Scientifique).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delhalle, J., Harris, F.E. Fourier representation method for electronic structures of linear polymers. Theoret. Chim. Acta 48, 127–141 (1978). https://doi.org/10.1007/PL00020706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00020706

Key words

Navigation