Theoretica chimica acta

, Volume 35, Issue 1, pp 33–58 | Cite as

Individualized configuration selection in CI calculations with subsequent energy extrapolation

  • Robert J. Buenker
  • Sigrid D. Peyerimhoff


A configuration selection method for CI calculations is discussed and applied in which the energy lowering produced in a secular equation by the addition of a given test species to a series of dominant configurations is used as an ordering parameter. Configurations with energy lowerings below a given energy cut-off value are not included in the final secular equations but instead a method of estimating the combined effect of the neglected species on the corresponding non-selected CI results is developed. The influence of the choice of main configurations used in the selection process is given close examination as well as the importance of the MO basis employed in the treatment as a whole; in the latter case a non-iterative procedure for obtaining approximate natural orbitals for such calculations is suggested. The resulting configuration selection procedure is equally applicable to all types of electronic states in any nuclear geometry and the results of the associated CI calculations are seen to be essentially equivalent to a complete treatment in which all single- and double-excitation species with respect to aseries of dominant configurations in a given state are included.

Key words

Configuration interaction Selection of configurations Transition energies Electronic spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rauk,A., Clementi,E., Allen,L.C.: J. Chem. Phys.52, 4133 (1970)Google Scholar
  2. 2.
    Gershgorn,Z., Shavitt,I.: Int. J. Quantum Chem.2, 751 (1968)Google Scholar
  3. 3.
    Whitten,J.L., Hackmeyer,M.: J. Chem. Phys.51, 5584 (1969)Google Scholar
  4. 3.a
    Hackmeyer,M., Whitten,J.L.: J. Chem. Phys.54, 3739 (1971)Google Scholar
  5. 4.
    For example: Bender,CF., Davidson, E.R.: Phys. Rev.183, 23 (1969)Google Scholar
  6. 4.a
    Langhoff, S. R., Elbert,S.T., Davidson,E.R.: Configuration interaction study of the spin dipole-dipole parameters for formaldehyde. In pressGoogle Scholar
  7. 5.
    Peyerimhoff,S.D., Buenker,R.J.: Chem. Phys. Letters16, 235 (1972)Google Scholar
  8. 6.
    Bunge,A.: J. Chem. Phys.53, 20 (1970); see also McLean,A.D., Liu,B.: J. Chem. Phys.58, 1066 (1973)Google Scholar
  9. 7.
    Bunge,A.: Phys. Rev.168, 92 (1968)Google Scholar
  10. 8.
    Shavitt,I.: J. Compt. Phys.6, 124 (1970)Google Scholar
  11. 8.a
    Nesbet,R.K.: J. Chem. Phys.43, 311 (1965)Google Scholar
  12. 9.
    Bruna,P., Peyerimhoff,S.D., Buenker,R.J., Rosmus,P.: Non-empirical SCF and CI study of the ground and excited states of thioformaldehyde. Chemical Physics (In press)Google Scholar
  13. 10.
    Bender,C.F., Davidson,E.R.: J. Chem. Phys.49, 4222 (1968)Google Scholar
  14. 11.
    Bender,C.F.., Davidson,E.R.: J. Phys. Chem.70, 2675 (1966)Google Scholar
  15. 12.
    For example: Schaefer III,H.F.: J. Chem. Phys.54, 2207 (1971)Google Scholar
  16. 12.a
    SchaeferIII, H.F.: The electronic structure of atoms and molecules: A survey of rigorous quantum mechanical results. Reading, Pa.: Addison Wesley 1972Google Scholar
  17. 13.
    Lie,G.C., Hinze,J., Liu,B.: J. Chem. Phys.59, 1872 (1973)Google Scholar
  18. 14.
    Hay,P.G.: J. Chem. Phys.59, 2468 (1973)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Robert J. Buenker
    • 1
  • Sigrid D. Peyerimhoff
    • 1
  1. 1.Lehrstuhl für Theoretische ChemieUniversität BonnBonnGermany

Personalised recommendations