Advertisement

Theoretica chimica acta

, Volume 49, Issue 2, pp 131–142 | Cite as

On a formal treatment of the Rayleigh-Schrödinger perturbation theory

  • Dietrich Haase
Original Investigations
  • 31 Downloads

Abstract

The formal treatment of the Rayleigh-Schrödinger perturbation theory based on a first-order iteration procedure as described in a previous publication is discussed with reference to the properties of the terms of a Taylor series. The formalism is generalized to allow for multiple perturbation.

Key words

Rayleigh Schrödinger perturbation theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kemble, E. C.: The fundamental principles of quantum mechanics, chap. 11. New York: Dover Publ. 1958Google Scholar
  2. 2.
    Wigner, E. P.: Group theory and its application to the quantum mechanics of atomic spectra, chap. 5. New York-London: Academic Press 1959Google Scholar
  3. 3.
    Hirschfelder, J. O., Byers Brown, W., Epstein, S. T.: Advan. Quantum Chem.1, 255 (1964)CrossRefGoogle Scholar
  4. 4.
    Löwdin, P.-O.: J. Math. Phys.3, 969 (1962)CrossRefGoogle Scholar
  5. 5.
    Hirschfelder, J. O.: Intern. J. Quantum Chem.3, 731 (1969)CrossRefGoogle Scholar
  6. 6.
    Silverstone, H. J.: J. Chem. Phys.54, 2325 (1971)CrossRefGoogle Scholar
  7. 7.
    Messiah, A.: Quantum mechanics, Vol. II, chap. 16. Amsterdam: North-Holland 1965Google Scholar
  8. 8.
    Silverstone, H. J., Holloway, T. T.: J. Chem. Phys.52, 1472 (1970)CrossRefGoogle Scholar
  9. 9.
    Haase, D., Ruch, E.: Theoret. Chim. Acta (Berl.)29, 235 (1973)CrossRefGoogle Scholar
  10. 10.
    Primas, H.: Rev. Mod. Phys.35, 710 (1963)CrossRefGoogle Scholar
  11. 11.
    Murray, F. J.: J. Math. Phys.3, 451 (1962)CrossRefGoogle Scholar
  12. 12.
    Hirschfelder, J. O.: J. Chem. Phys.39, 2099 (1963)CrossRefGoogle Scholar
  13. 13.
    Haase, D.: Fortschr. Phys.24, 37 (1976)CrossRefGoogle Scholar
  14. 14.
    Haase, D., Ruch, E.: Theoret. Chim. Acta (Berl.)29, 189 (1973)CrossRefGoogle Scholar
  15. 15.
    Jacobson, N.: Lie algebras, pp. 7–9. New York: Interscience Publ. 1966Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Dietrich Haase
    • 1
  1. 1.Institut für Quantenchemie der Freien Universität BerlinBerlin 45

Personalised recommendations