Skip to main content
Log in

Chromosomal effects on peptidase activities inDrosophila melanogaster

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The peptidase system inDrosophila melanogaster (dipeptidase-A, -B, and -C and leucine aminopeptidases G and P) was used as a model to study the effects of modifier genes on activity of enzymes with similar functions. A screen of X, second, and third chromosome substitution isogenic lines revealed the presence of activity modifiers for peptidases on all three chromosomes. Correlation analyses indicated that covariation between some of the peptidase activities is independent of genetic background, while others are associated with variable second chromosomes. Chromosome-specific effects onK m ,V max, and specific activity of partially purified peptidases were also detected. Moreover, a repeatable technique using anion-exchange column chromatography allowed the characterization of possibly two putative peptidic enzymes, glycyl-l-isoleucine-ase andl-leucyl-l-proline-ase, whose kinetic properties differ from the dipeptidases and the leucine aminopeptidases. These findings confirm the existence of activity modifiers for peptidases, much like other enzymes inDrosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, B. S. (1973). The maternal and zygotic control of development bycinnamon, a new mutant inDrosophila melanogaster.Dev. Biol. 33429.

    Google Scholar 

  • Beckman, L., and Johnson, F. M. (1964). Genetic control of aminopeptidases inDrosophila melanogaster.Heredites 51221.

    Google Scholar 

  • Bentley, M. M., and Williamson, J. H. (1979). The control of aldehyde oxidase and xanthine dehydrogenase activities by thecinnamon gene inDrosophila melanogaster.Can. J. Genet. Cytol. 21457.

    Google Scholar 

  • Bentley, M. M., and Williamson, J. H. (1982). The control of aldehyde oxidase and xanthine dehydrogenase activities and CRM levels by themal locus inDrosophila melanogaster.Can. J. Genet. Cytol. 2411.

    Google Scholar 

  • Bentley, M. M., and Williamson, J. H., and Oliver, M. J. (1981). The effects of molybdate, tungstate andlxd on aldehyde oxidase and xanthine dehydrogenase inDrosophila melanogaster.Can. J. Genet. Cytol. 23597.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.Anal. Biochem.72248.

    Google Scholar 

  • Britten, R. J., and Davidson, E. H. (1969). Gene regulation for higher cells: A theory.Science 165349.

    Google Scholar 

  • Clark, A. G. (1989). Causes and consequences of variation in energy storage inDrosophila melanogaster.Genetics 123131.

    Google Scholar 

  • Collett, J. I. (1976a). Small peptides, a life-long store of amino acid in adultDrosophila andCalliphora.J. Insect Physiol. 221433.

    Google Scholar 

  • Collett, J. I. (1976b). Peptidase-mediated storage of amino acids in small peptides.Insect Biochem. 6179.

    Google Scholar 

  • Collett, J. I. (1976c). The constancy and similarity of the amounts of free amino acids in inbred strains ofDrosophila and outbredCalliphora.J. Insect Physiol. 221251.

    Google Scholar 

  • Collett, J. I. (1989). Characterization of the peptidases ofCalliphora: Many features allow the utilization of small peptides as an amino acid reservoir.Insect Biochem. 19535.

    Google Scholar 

  • Davidson, E. H., and Britten, R. J. (1979). Regulation of gene expression: Possible role of repetitive sequences.Science 2041052.

    Google Scholar 

  • Falke, E. V., and MacIntyre, R. J. (1966). The genetic localization of a non-specific Leucine aminopeptidase inDrosophila melanogaster.Dros. Inform. Serv. 41169.

    Google Scholar 

  • Finnerty, V. (1976). Genetic units ofDrosophila—simple cistrons. In Ashburner, M., and Novitski, E. (eds.),The Genetics and Biology of Drosophila, Vol. 1b Academic Press, New York, p. 721.

    Google Scholar 

  • Freund, R. J., and Littell, R. C. (1981).SAS for Linear Models SAS Institute, Cary, N.C.

    Google Scholar 

  • Gould, S. J. (1977).Ontogeny and Phylogeny Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Gromnicki, A. R., and Bentley, M. M. (1991). The isolation and characterization of mutant alleles at a new X-linked locus,mex, affecting NADP(+)-dependent enzymes inDrosophila melanogaster.Biochem. Genet. 28145.

    Google Scholar 

  • Hall, N. A. (1986). Peptidases inDrosophila melanogaster. I. Characterization of dipeptidase and leucine aminopeptidase activities.Biochem. Genet. 24775.

    Google Scholar 

  • Hall, N. A. (1988a). Peptidases inDrosophila melanogaster. II. The variation of peptidase activities during development.Insect Biochem.18145.

    Google Scholar 

  • Hall, N. A. (1988b). Peptidases inDrosophila melanogaster. III. The regulation of leucine aminopeptidase P and leucine aminopeptidase G.Insect Biochem.18157.

    Google Scholar 

  • Hiraizumi, K., and Laurie, C. C. (1988). Genetic characterization of dipeptidase activity modifiers inDrosophila melanogaster from natural populations.Biochem. Genet. 26783.

    Google Scholar 

  • Hiraizumi, K., Tavormina, P. A., and Mathes, K. D. (1992a). Genetic and environmental effects on the expression of peptidases and larval viability inDrosophila melanogaster.Genetics 131625.

    Google Scholar 

  • Hiraizumi, K., Hourani, C. L., Zambarano, M. C., Freeman, J. E., IV, and Mathes, K. D. (1992b). Dipeptidase-C inDrosophila melanogaster: Genetic, ontogenetic, and tissuespecific variation.Biochem. Genet. 30 (in press).

  • Laurie-Ahlberg, C. C. (1982). Genetic, ontogenetic, and tissue-specific variation of dipeptidases inDrosophila melanogaster.Biochem. Genet. 20407.

    Google Scholar 

  • Laurie-Ahlberg, C. C. (1985). Genetic variation affecting the expression of enzyme-coding genes inDrosophila: An evolutionary perspective. In Rattazzi, M. C. Scandalios, J. G., and Whitt, G. S. (eds.),Isozymes: Current Topics in Biological and Medical Research, Vol. 12 Alan R. Liss, New York, p. 33.

    Google Scholar 

  • Laurie-Ahlberg, C. C., Maroni, G., Bewley, G. C., Lucchessi, J. C., and Weir, B. S. (1980). Quantitative genetic variation of enzyme activities in natural populations ofDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 771073.

    Google Scholar 

  • Lineweaver, H., and Burk, D. (1934). The determination of enzyme dissociation constants.J. Am. Chem. Soc. 56658.

    Google Scholar 

  • Miyashita, N., Laurie-Ahlberg, C. C., Wilton, A. N., and Emigh, T. H. (1986). Quantitative analysis of X chromosome effects on the activities of the glucose 6-phosphate and 6-phosphogluconate dehydrogenases ofDrosophila melanogaster.Genetics 113321.

    Google Scholar 

  • Mode, C. J., and Robinson, H. F. (1959). Pleiotropism and the genetic variance and covariance.Biometrics 15518.

    Google Scholar 

  • Ohnishi, S., and Voelker, R. A. (1981). Comparative studies of allozyme loci inDrosophila simulans andDrosophila melanogaster. I. Three dipeptidase loci.Biochem. Genet. 1975.

    Google Scholar 

  • Sakai, R. K., Tung, D. A., and Scandalios, J. G. (1969). Developmental genetic studies of aminopeptidases inDrosophila melanogaster.Mol. Gen. Genet. 10524.

    Google Scholar 

  • Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components.Biomet. Bull. 2110.

    Google Scholar 

  • Voelker, R. A., and Langley, C. H. (1978). Dipeptidase-A: A polymorphic locus inDrosophila melanogaster.Genetica 49233.

    Google Scholar 

  • Watanabe, Y., Kumagai, Y., Kubo, Y., Shimamori, Y., and Fujimoto, Y. (1989). Aminopeptidases in human retroplacental sera: Purification and characterization of two enzymes.Biochem. Med. Met. Bio. 41139.

    Google Scholar 

  • Wilcox, D. R., and Prakash, S. (1980). Variation in biochemical properties of allozymes of xanthine dehydrogenase inDrosophila pseoobscura.Genetics 96927.

    Google Scholar 

  • Wilson, A. C. (1975). Evolutionary importance of gene regulation.Stadler Genet. Symp. 7117.

    Google Scholar 

  • Wilson, A. C. (1976). Gene regulation in evolution. In Ayala, F. J. (ed.),Molecular Evolution Sinauer Associates, Sunderland, Mass., p. 225.

    Google Scholar 

  • Wilton, A. N., Laurie-Ahlberg, C. C., Emigh, T. H., and Curtsinger, J. W. (1982). Naturally occurring enzyme activity variation inDrosophila melanogaster. II. Relationships among enzymes.Genetics 102207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These studies were supported by grants from the National Institutes of Health (GM42-115-01A1), the Whitaker Foundation of the Research Corporation (C-2560), and the National Science Foundation (USE 8951018) to Kazuo Hiraizumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiraizumi, K., Mathes, K.D. & Shalish, C.I. Chromosomal effects on peptidase activities inDrosophila melanogaster . Biochem Genet 31, 29–50 (1993). https://doi.org/10.1007/PL00020384

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00020384

Key words

Navigation