Major colour patterns of reef-building corals are due to a family of GFP-like proteins


Reef-building corals are renowned for their brilliant colours yet the biochemical basis for the pigmentation of corals is unknown. Here, we show that these colours are due to a family of GFP-like proteins that fluoresce under ultraviolet (UV) or visible light. Pigments from ten coral species were almost identical to pocilloporin (Dove et al. 1995) being dimers or trimers with approximately 28-kDa subunits. Degenerative primers made to common N-terminal sequences yielded a complete sequence from reef-building coral cDNA, which had 19.6% amino acid identity with green fluorescent protein (GFP). Molecular modelling revealed a `β-can' structure, like GFP, with 11 β-strands and a completely solvent-inaccessible fluorophore composed of the modified residues Gln-61, Tyr-62 and Gly-63. The molecular properties of pocilloporins indicate a range of functions from the conversion of high-intensity UV radiation into photosynthetically active radiation (PAR) that can be regulated by the dinoflagellate peridinin-chlorophyll-protein (PCP) complex, to the shielding of the Soret and Qx bands of chlorophyll a and c from scattered high-intensity light. These properties of pocilloporin support its potential role in protecting the photosynthetic machinery of the symbiotic dinoflagellates of corals under high light conditions and in enhancing the availability of photosynthetic light under shade conditions.

This is a preview of subscription content, access via your institution.

Author information



Additional information

Accepted: 29 May 2000

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dove, S., Hoegh-Guldberg, O. & Ranganathan, S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197–204 (2001).

Download citation

  • Key words Reef-building coral
  • Pigments
  • GFP
  • Photoprotection
  • Photosynthetic accessory pigments