Skip to main content
Log in

Estimation of evolutionary distances from protein spatial structures

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

New equations are derived to estimate the number of amino acid substitutions per site between two homologous proteins from the root mean square (RMS) deviation between two spatial structures and from the fraction of identical residues between two sequences. The equations are based on evolutionary models, analyzing predominantly structural changes and not sequence changes. Evolution of spatial structure is treated as a diffusion in an elastic force field. Diffusion accounts for structural changes caused by amino acid substitutions, and elastic force reflects selection, which preserves protein fold. Obtained equations are supported by analysis of protein spatial structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry D, Hartigan JA (1987) Asynchronous distance between homologous DNA sequences. Biometrics 43:261–276

    Article  PubMed  CAS  Google Scholar 

  • Chotia C, Lesk A (1986) The relation between the divergence of sequence and structure in proteins. The EMBO J 5:823–826

    Google Scholar 

  • Dayhoff MO, Eck RV, Park CM (1972) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, 5. National Biomedical Research Foundation, Washington, DC, pp 89–99

    Google Scholar 

  • Dayhoff MO, Schwartz RM & Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, 5, Suppl 3. National Biomedical Research Foundation, Washington, DC, pp 345–352

    Google Scholar 

  • Flores TP, Orengo CA, Moss DS, Thornton JM (1993) Comparison of conformational characteristics in structurally similar protein pairs. Protein Science 2:1811–1826

    Article  PubMed  CAS  Google Scholar 

  • Grishin NV (1995) Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites. J Mol Evol 41:675–679

    Article  PubMed  CAS  Google Scholar 

  • Gutin AM, Badretdinov AY (1994) Evolution of protein 3D structures as diffusion in multidimensional conformational space. J Mol Evol 39:206–209

    CAS  Google Scholar 

  • Holmquist R, Goodman M, Conroy T, Czelusniak J (1983) The spatial distribution of fixed mutations within genes coding for proteins. J Mol Evol 19:437–448

    Article  PubMed  CAS  Google Scholar 

  • Hubbard TJP, Blundell TL (1987) Comparison of solvent-inaccessible cores of homologous proteins: definitions useful for protein modeling. Protein Engineering 1:159–171

    Article  PubMed  CAS  Google Scholar 

  • Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31:151–160

    Article  CAS  Google Scholar 

  • Lesk AM, Chotia CH. (1986) The response of protein structure to amino-acid sequence changes. Phil Trans R Soc Lond A 317:345–356

    Article  CAS  Google Scholar 

  • Olsen GJ (1987) Earliest phylogenetic branchings: comparing rRNAbased evolutionary trees inferred with various techniques. Cold Spring Harbor Symposia on Quantitative Biology 52:825–837

    PubMed  CAS  Google Scholar 

  • Ota T, Nei M (1994) Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites. J Mol Evol 38:642–643

    Article  CAS  Google Scholar 

  • Rzhetsky A, Nei M. (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Saitou N (1988) Property and efficiency of the maximum likelihood method for molecular phylogeny. J Mol Evol 27:261–273

    Article  PubMed  CAS  Google Scholar 

  • Takacs L. (1966) Stochastic process. Methuen & Co LTD, London, John Wiley & Sons Inc., NY

    Google Scholar 

  • Tajima F, Takezaki N (1994) Estimation of evolutionary distance for reconstructing molecular phylogenetic trees. Mol Biol Evol 11:278–286

    PubMed  CAS  Google Scholar 

  • Tateno Y, Takezaki N, Nei M. (1994) Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. Mol Biol Evol 11:261–277

    PubMed  CAS  Google Scholar 

  • Uzzel T, Corbin KW (1971) Fitting discrete probability distribution to evolutionary events. Science 172:1089–1096

    Article  Google Scholar 

  • Wilbur WJ (1985) On the PAM matrix model of protein evolution. Mol Biol Evol 2:434–447

    PubMed  CAS  Google Scholar 

  • Yang Z (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401

    PubMed  CAS  Google Scholar 

  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    Article  PubMed  CAS  Google Scholar 

  • Zharkikh A (1994) Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39:315–329

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L. (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vodel HJ (eds) Evolving genes and proteins. Academic Press, NY, pp 97–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grishin, N.V. Estimation of evolutionary distances from protein spatial structures. J Mol Evol 45, 359–369 (1997). https://doi.org/10.1007/PL00006241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006241

Key words

Navigation