Abstract
Pseudo-Goldstone modes appear in many physical systems and display robust universal features. First, their mass m obeys the so-called Gell-Mann-Oakes-Renner (GMOR) relation f2m2 = \( H\overline{\sigma} \), with f the Goldstone stiffness, H the explicit breaking scale and \( \overline{\sigma} \) the spontaneous condensate. More recently, it has been shown that their damping Ω is constrained to follow the relation Ω = m2Dφ, where Dφ is the Goldstone diffusivity in the purely spontaneous phase. Pions are the most paradigmatic example of pseudo-Goldstone modes and they are related to chiral symmetry breaking in QCD. In this work, we consider a bottom-up soft-wall AdS-QCD model with broken SU(2)L × SU(2)R symmetry and we study the nature of the associated pseudo-Goldstone modes — the pions. In particular, we perform a detailed investigation of their dispersion relation in presence of dissipation, of the role of the explicit breaking induced by the quark masses and of the dynamics near the critical point. Taking advantage of the microscopic information provided by the holographic model, we give quantitative predictions for all the coefficients appearing in the effective description. In particular, we estimate the finite temperature behavior of the kinetic parameter \( \mathfrak{r} \)2 defined as the ratio between the Goldstone diffusivity Dφ and the pion attenuation constant DA. Interestingly, we observe important deviations from the value \( \mathfrak{r} \)2 = 3/4 computed in chiral perturbation theory in the limit of zero temperature.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A.J. Beekman, L. Rademaker and J. van Wezel, An introduction to spontaneous symmetry breaking, SciPost Phys. Lect. Notes 11 (2019) 1 [arXiv:1909.01820] [INSPIRE].
Y. Nambu, Quasiparticles and gauge invariance in the theory of superconductivity, Phys. Rev. 117 (1960) 648 [INSPIRE].
J. Goldstone, A. Salam and S. Weinberg, Broken symmetries, Phys. Rev. 127 (1962) 965 [INSPIRE].
H. Watanabe and T. Brauner, On the number of Nambu-Goldstone bosons and its relation to charge densities, Phys. Rev. D 84 (2011) 125013 [arXiv:1109.6327] [INSPIRE].
I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].
A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].
M. Baggioli and B. Goutéraux, Colloquium: hydrodynamics and holography of charge density wave phases, arXiv:2203.03298 [INSPIRE].
D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].
A. Pich, Effective field theory with Nambu-Goldstone modes, arXiv:1804.05664 [INSPIRE].
A. Schmitt, Introduction to superfluidity: field-theoretical approach and applications, Lect. Notes Phys. 888 (2015) 1 [arXiv:1404.1284] [INSPIRE].
R.J. Donnelly, The two-fluid theory and second sound in liquid helium, Phys. Today 62 (2009) 34.
D.V. Else and T. Senthil, Critical drag as a mechanism for resistivity, Phys. Rev. B 104 (2021) 205132 [arXiv:2106.15623] [INSPIRE].
Y. Minami and Y. Hidaka, Spontaneous symmetry breaking and Nambu-Goldstone modes in dissipative systems, Phys. Rev. E 97 (2018) 012130 [arXiv:1509.05042] [INSPIRE].
M. Hongo, S. Kim, T. Noumi and A. Ota, Effective Lagrangian for Nambu-Goldstone modes in nonequilibrium open systems, Phys. Rev. D 103 (2021) 056020 [arXiv:1907.08609] [INSPIRE].
Y. Minami, H. Nakano and Y. Hidaka, Rainbow Nambu-Goldstone modes under a shear flow, Phys. Rev. Lett. 126 (2021) 141601 [arXiv:2009.10357] [INSPIRE].
D.M. Hofman and N. Iqbal, Goldstone modes and photonization for higher form symmetries, SciPost Phys. 6 (2019) 006 [arXiv:1802.09512] [INSPIRE].
J. Zaanen, Y. Liu, Y. Sun and K. Schalm, Holographic duality in condensed matter physics, Cambridge University Press (2015).
S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press (2014).
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
C.P. Herzog, N. Lisker, P. Surowka and A. Yarom, Transport in holographic superfluids, JHEP 08 (2011) 052 [arXiv:1101.3330] [INSPIRE].
L. Alberte, M. Ammon, A. Jiménez-Alba, M. Baggioli and O. Pujolàs, Holographic phonons, Phys. Rev. Lett. 120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].
A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Gapless and gapped holographic phonons, JHEP 01 (2020) 058 [arXiv:1910.11330] [INSPIRE].
J. Armas and A. Jain, Viscoelastic hydrodynamics and holography, JHEP 01 (2020) 126 [arXiv:1908.01175] [INSPIRE].
M. Ammon, M. Baggioli, S. Gray, S. Grieninger and A. Jain, On the hydrodynamic description of holographic viscoelastic models, Phys. Lett. B 808 (2020) 135691 [arXiv:2001.05737] [INSPIRE].
I. Amado, D. Arean, A. Jimenez-Alba, K. Landsteiner, L. Melgar and I.S. Landea, Holographic type II Goldstone bosons, JHEP 07 (2013) 108 [arXiv:1302.5641] [INSPIRE].
M. Baggioli, S. Grieninger and L. Li, Magnetophonons & type-B Goldstones from hydrodynamics to holography, JHEP 09 (2020) 037 [arXiv:2005.01725] [INSPIRE].
S. Ishigaki and M. Matsumoto, Nambu-Goldstone modes in non-equilibrium systems from AdS/CFT correspondence, JHEP 04 (2021) 040 [arXiv:2012.01177] [INSPIRE].
D.M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys. 4 (2018) 005 [arXiv:1707.08577] [INSPIRE].
N. Iqbal and K. Macfarlane, Higher-form symmetry breaking and holographic flavour, arXiv:2107.00373 [INSPIRE].
K. Hinterbichler, D.M. Hofman, A. Joyce and G. Mathys, Gravity as a gapless phase and biform symmetries, arXiv:2205.12272 [INSPIRE].
M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].
J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].
X. Cao, S. Qiu, H. Liu and D. Li, Thermal properties of light mesons from holography, JHEP 08 (2021) 005 [arXiv:2102.10946] [INSPIRE].
M. Ammon, M. Baggioli and A. Jiménez-Alba, A unified description of translational symmetry breaking in holography, JHEP 09 (2019) 124 [arXiv:1904.05785] [INSPIRE].
A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Universal relaxation in a holographic metallic density wave phase, Phys. Rev. Lett. 123 (2019) 211602 [arXiv:1812.08118] [INSPIRE].
T. Andrade and A. Krikun, Coherent vs incoherent transport in holographic strange insulators, JHEP 05 (2019) 119 [arXiv:1812.08132] [INSPIRE].
A. Donos, P. Kailidis and C. Pantelidou, Dissipation in holographic superfluids, JHEP 09 (2021) 134 [arXiv:2107.03680] [INSPIRE].
M. Ammon, D. Arean, M. Baggioli, S. Gray and S. Grieninger, Pseudo-spontaneous U(1) symmetry breaking in hydrodynamics and holography, JHEP 03 (2022) 015 [arXiv:2111.10305] [INSPIRE].
R. Argurio, A. Marzolla, A. Mezzalira and D. Musso, Analytic pseudo-Goldstone bosons, JHEP 03 (2016) 012 [arXiv:1512.03750] [INSPIRE].
A. Amoretti, D. Areán, R. Argurio, D. Musso and L.A. Pando Zayas, A holographic perspective on phonons and pseudo-phonons, JHEP 05 (2017) 051 [arXiv:1611.09344] [INSPIRE].
M. Baggioli and S. Grieninger, Zoology of solid & fluid holography — Goldstone modes and phase relaxation, JHEP 10 (2019) 235 [arXiv:1905.09488] [INSPIRE].
A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Hydrodynamics of broken global symmetries in the bulk, JHEP 10 (2019) 218 [arXiv:1905.00398] [INSPIRE].
A. Amoretti, D. Arean, D.K. Brattan and N. Magnoli, Hydrodynamic magneto-transport in charge density wave states, JHEP 05 (2021) 027 [arXiv:2101.05343] [INSPIRE].
A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Incoherent hydrodynamics and density waves, Class. Quant. Grav. 37 (2020) 045005 [arXiv:1906.03132] [INSPIRE].
L.V. Delacrétaz, B. Goutéraux and V. Ziogas, Damping of pseudo-Goldstone fields, Phys. Rev. Lett. 128 (2022) 141601 [arXiv:2111.13459] [INSPIRE].
M. Baggioli and M. Landry, Effective field theory for quasicrystals and phasons dynamics, SciPost Phys. 9 (2020) 062 [arXiv:2008.05339] [INSPIRE].
M. Baggioli, Homogeneous holographic viscoelastic models and quasicrystals, Phys. Rev. Res. 2 (2020) 022022 [arXiv:2001.06228] [INSPIRE].
E. Grossi, A. Soloviev, D. Teaney and F. Yan, Transport and hydrodynamics in the chiral limit, Phys. Rev. D 102 (2020) 014042 [arXiv:2005.02885] [INSPIRE].
J. Armas, A. Jain and R. Lier, Approximate symmetries, pseudo-Goldstones, and the second law of thermodynamics, arXiv:2112.14373 [INSPIRE].
K. Rajagopal and F. Wilczek, Static and dynamic critical phenomena at a second order QCD phase transition, Nucl. Phys. B 399 (1993) 395 [hep-ph/9210253] [INSPIRE].
D.T. Son, Hydrodynamics of nuclear matter in the chiral limit, Phys. Rev. Lett. 84 (2000) 3771 [hep-ph/9912267] [INSPIRE].
E. Grossi, A. Soloviev, D. Teaney and F. Yan, Soft pions and transport near the chiral critical point, Phys. Rev. D 104 (2021) 034025 [arXiv:2101.10847] [INSPIRE].
A. Florio, E. Grossi, A. Soloviev and D. Teaney, Dynamics of the O(4) critical point in QCD, Phys. Rev. D 105 (2022) 054512 [arXiv:2111.03640] [INSPIRE].
D.M. Rodrigues, D. Li, E. Folco Capossoli and H. Boschi-Filho, Chiral symmetry breaking and restoration in 2 + 1 dimensions from holography: magnetic and inverse magnetic catalysis, Phys. Rev. D 98 (2018) 106007 [arXiv:1807.11822] [INSPIRE].
P. Colangelo, F. Giannuzzi, S. Nicotri and V. Tangorra, Temperature and quark density effects on the chiral condensate: an AdS/QCD study, Eur. Phys. J. C 72 (2012) 2096 [arXiv:1112.4402] [INSPIRE].
N. Evans, C. Miller and M. Scott, Inverse magnetic catalysis in bottom-up holographic QCD, Phys. Rev. D 94 (2016) 074034 [arXiv:1604.06307] [INSPIRE].
S.P. Bartz and T. Jacobson, Chiral phase transition and meson melting from AdS/QCD, Phys. Rev. D 94 (2016) 075022 [arXiv:1607.05751] [INSPIRE].
A. Ballon-Bayona, L.A.H. Mamani and D.M. Rodrigues, Spontaneous chiral symmetry breaking in holographic soft wall models, Phys. Rev. D 104 (2021) 126029 [arXiv:2107.10983] [INSPIRE].
Y.-Q. Sui, Y.-L. Wu, Z.-F. Xie and Y.-B. Yang, Prediction for the mass spectra of resonance mesons in the soft-wall AdS/QCD with a modified 5D metric, Phys. Rev. D 81 (2010) 014024 [arXiv:0909.3887] [INSPIRE].
T. Gherghetta, J.I. Kapusta and T.M. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model, Phys. Rev. D 79 (2009) 076003 [arXiv:0902.1998] [INSPIRE].
D. Li, M. Huang and Q.-S. Yan, A dynamical soft-wall holographic QCD model for chiral symmetry breaking and linear confinement, Eur. Phys. J. C 73 (2013) 2615 [arXiv:1206.2824] [INSPIRE].
D. Li and M. Huang, Dynamical holographic QCD model for glueball and light meson spectra, JHEP 11 (2013) 088 [arXiv:1303.6929] [INSPIRE].
D. Li and M. Huang, Chiral phase transition of QCD with Nf = 2 + 1 flavors from holography, JHEP 02 (2017) 042 [arXiv:1610.09814] [INSPIRE].
K. Chelabi, Z. Fang, M. Huang, D. Li and Y.-L. Wu, Chiral phase transition in the soft-wall model of AdS/QCD, JHEP 04 (2016) 036 [arXiv:1512.06493] [INSPIRE].
K. Chelabi, Z. Fang, M. Huang, D. Li and Y.-L. Wu, Realization of chiral symmetry breaking and restoration in holographic QCD, Phys. Rev. D 93 (2016) 101901 [arXiv:1511.02721] [INSPIRE].
J. Chen, S. He, M. Huang and D. Li, Critical exponents of finite temperature chiral phase transition in soft-wall AdS/QCD models, JHEP 01 (2019) 165 [arXiv:1810.07019] [INSPIRE].
Z. Fang, S. He and D. Li, Chiral and deconfining phase transitions from holographic QCD study, Nucl. Phys. B 907 (2016) 187 [arXiv:1512.04062] [INSPIRE].
M.A. Martin Contreras, E. Folco Capossoli, D. Li, A. Vega and H. Boschi-Filho, Pion form factor from an AdS deformed background, Nucl. Phys. B 977 (2022) 115726 [arXiv:2104.04640] [INSPIRE].
X. Cao, H. Liu and D. Li, Pion quasiparticles and QCD phase transitions at finite temperature and isospin density from holography, Phys. Rev. D 102 (2020) 126014 [arXiv:2009.00289] [INSPIRE].
M. Lv, D. Li and S. He, Pion condensation in a soft-wall AdS/QCD model, JHEP 11 (2019) 026 [arXiv:1811.03828] [INSPIRE].
B. Sheng, Y. Wang, X. Wang and L. Yu, Pole and screening masses of neutral pions in a hot and magnetized medium: a comprehensive study in the Nambu-Jona-Lasinio model, Phys. Rev. D 103 (2021) 094001 [arXiv:2010.05716] [INSPIRE].
R.A. Davison, L.V. Delacrétaz, B. Goutéraux and S.A. Hartnoll, Hydrodynamic theory of quantum fluctuating superconductivity, Phys. Rev. B 94 (2016) 054502 [Erratum ibid. 96 (2017) 059902] [arXiv:1602.08171] [INSPIRE].
L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev. B 96 (2017) 195128 [arXiv:1702.05104] [INSPIRE].
A. Jain, Theory of non-Abelian superfluid dynamics, Phys. Rev. D 95 (2017) 121701 [arXiv:1610.05797] [INSPIRE].
C. Pujol and D. Davesne, Relativistic dissipative hydrodynamics with spontaneous symmetry breaking, Phys. Rev. C 67 (2003) 014901 [hep-ph/0204355] [INSPIRE].
D.T. Son and M.A. Stephanov, Pion propagation near the QCD chiral phase transition, Phys. Rev. Lett. 88 (2002) 202302 [hep-ph/0111100] [INSPIRE].
D.T. Son and M.A. Stephanov, Real time pion propagation in finite temperature QCD, Phys. Rev. D 66 (2002) 076011 [hep-ph/0204226] [INSPIRE].
A. Soloviev, Transport near the chiral critical point, EPJ Web Conf. 258 (2022) 05008 [arXiv:2111.11375] [INSPIRE].
A. Donos and C. Pantelidou, Higgs/amplitude mode dynamics from holography, JHEP 08 (2022) 246 [arXiv:2205.06294] [INSPIRE].
A. Donos and P. Kailidis, Nearly critical holographic superfluids, JHEP 12 (2022) 028 [arXiv:2210.06513] [INSPIRE].
B.I. Halperin and P.C. Hohenberg, Hydrodynamic theory of spin waves, Phys. Rev. 188 (1969) 898 [INSPIRE].
J.M. Torres-Rincon and D. Teaney, Kinetics of hydrodynamic pions in chiral perturbation theory, Phys. Rev. D 106 (2022) 056012 [arXiv:2201.10495] [INSPIRE].
J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].
A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].
Y. Chen and M. Huang, Holographic QCD model for Nf = 4, Phys. Rev. D 105 (2022) 026021 [arXiv:2110.08215] [INSPIRE].
A. Cherman, T.D. Cohen and E.S. Werbos, The chiral condensate in holographic models of QCD, Phys. Rev. C 79 (2009) 045203 [arXiv:0804.1096] [INSPIRE].
Z. Fang, Y.-L. Wu and L. Zhang, Chiral phase transition and meson spectrum in improved soft-wall AdS/QCD, Phys. Lett. B 762 (2016) 86 [arXiv:1604.02571] [INSPIRE].
D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].
T. Andrade, M. Baggioli and A. Krikun, Phase relaxation and pattern formation in holographic gapless charge density waves, JHEP 03 (2021) 292 [arXiv:2009.05551] [INSPIRE].
X. Cao, J. Chao, H. Liu and D. Li, Thermalization and prethermalization in the soft-wall AdS/QCD model, arXiv:2204.11604 [INSPIRE].
T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP 02 (2018) 085 [arXiv:1708.08306] [INSPIRE].
A. Donos and P. Kailidis, Dissipative effects in finite density holographic superfluids, JHEP 11 (2022) 053 [arXiv:2209.06893] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2210.09088
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Cao, X., Baggioli, M., Liu, H. et al. Pion dynamics in a soft-wall AdS-QCD model. J. High Energ. Phys. 2022, 113 (2022). https://doi.org/10.1007/JHEP12(2022)113
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2022)113