Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Pion dynamics in a soft-wall AdS-QCD model

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 19 December 2022
  • volume 2022, Article number: 113 (2022)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Pion dynamics in a soft-wall AdS-QCD model
Download PDF
  • Xuanmin Cao1,
  • Matteo Baggioli2,3,
  • Hui Liu1 &
  • …
  • Danning Li  ORCID: orcid.org/0000-0002-1436-68931 
  • 105 Accesses

  • 1 Citation

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Pseudo-Goldstone modes appear in many physical systems and display robust universal features. First, their mass m obeys the so-called Gell-Mann-Oakes-Renner (GMOR) relation f2m2 = \( H\overline{\sigma} \), with f the Goldstone stiffness, H the explicit breaking scale and \( \overline{\sigma} \) the spontaneous condensate. More recently, it has been shown that their damping Ω is constrained to follow the relation Ω = m2Dφ, where Dφ is the Goldstone diffusivity in the purely spontaneous phase. Pions are the most paradigmatic example of pseudo-Goldstone modes and they are related to chiral symmetry breaking in QCD. In this work, we consider a bottom-up soft-wall AdS-QCD model with broken SU(2)L × SU(2)R symmetry and we study the nature of the associated pseudo-Goldstone modes — the pions. In particular, we perform a detailed investigation of their dispersion relation in presence of dissipation, of the role of the explicit breaking induced by the quark masses and of the dynamics near the critical point. Taking advantage of the microscopic information provided by the holographic model, we give quantitative predictions for all the coefficients appearing in the effective description. In particular, we estimate the finite temperature behavior of the kinetic parameter \( \mathfrak{r} \)2 defined as the ratio between the Goldstone diffusivity Dφ and the pion attenuation constant DA. Interestingly, we observe important deviations from the value \( \mathfrak{r} \)2 = 3/4 computed in chiral perturbation theory in the limit of zero temperature.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A.J. Beekman, L. Rademaker and J. van Wezel, An introduction to spontaneous symmetry breaking, SciPost Phys. Lect. Notes 11 (2019) 1 [arXiv:1909.01820] [INSPIRE].

    Google Scholar 

  2. Y. Nambu, Quasiparticles and gauge invariance in the theory of superconductivity, Phys. Rev. 117 (1960) 648 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Goldstone, A. Salam and S. Weinberg, Broken symmetries, Phys. Rev. 127 (1962) 965 [INSPIRE].

  4. H. Watanabe and T. Brauner, On the number of Nambu-Goldstone bosons and its relation to charge densities, Phys. Rev. D 84 (2011) 125013 [arXiv:1109.6327] [INSPIRE].

  5. I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].

  6. A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Baggioli and B. Goutéraux, Colloquium: hydrodynamics and holography of charge density wave phases, arXiv:2203.03298 [INSPIRE].

  8. D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].

  9. A. Pich, Effective field theory with Nambu-Goldstone modes, arXiv:1804.05664 [INSPIRE].

  10. A. Schmitt, Introduction to superfluidity: field-theoretical approach and applications, Lect. Notes Phys. 888 (2015) 1 [arXiv:1404.1284] [INSPIRE].

    Article  Google Scholar 

  11. R.J. Donnelly, The two-fluid theory and second sound in liquid helium, Phys. Today 62 (2009) 34.

    Article  Google Scholar 

  12. D.V. Else and T. Senthil, Critical drag as a mechanism for resistivity, Phys. Rev. B 104 (2021) 205132 [arXiv:2106.15623] [INSPIRE].

  13. Y. Minami and Y. Hidaka, Spontaneous symmetry breaking and Nambu-Goldstone modes in dissipative systems, Phys. Rev. E 97 (2018) 012130 [arXiv:1509.05042] [INSPIRE].

  14. M. Hongo, S. Kim, T. Noumi and A. Ota, Effective Lagrangian for Nambu-Goldstone modes in nonequilibrium open systems, Phys. Rev. D 103 (2021) 056020 [arXiv:1907.08609] [INSPIRE].

  15. Y. Minami, H. Nakano and Y. Hidaka, Rainbow Nambu-Goldstone modes under a shear flow, Phys. Rev. Lett. 126 (2021) 141601 [arXiv:2009.10357] [INSPIRE].

  16. D.M. Hofman and N. Iqbal, Goldstone modes and photonization for higher form symmetries, SciPost Phys. 6 (2019) 006 [arXiv:1802.09512] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  17. J. Zaanen, Y. Liu, Y. Sun and K. Schalm, Holographic duality in condensed matter physics, Cambridge University Press (2015).

  18. S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].

  19. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press (2014).

  20. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

  21. C.P. Herzog, N. Lisker, P. Surowka and A. Yarom, Transport in holographic superfluids, JHEP 08 (2011) 052 [arXiv:1101.3330] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. L. Alberte, M. Ammon, A. Jiménez-Alba, M. Baggioli and O. Pujolàs, Holographic phonons, Phys. Rev. Lett. 120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].

  23. A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Gapless and gapped holographic phonons, JHEP 01 (2020) 058 [arXiv:1910.11330] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Armas and A. Jain, Viscoelastic hydrodynamics and holography, JHEP 01 (2020) 126 [arXiv:1908.01175] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. Ammon, M. Baggioli, S. Gray, S. Grieninger and A. Jain, On the hydrodynamic description of holographic viscoelastic models, Phys. Lett. B 808 (2020) 135691 [arXiv:2001.05737] [INSPIRE].

  26. I. Amado, D. Arean, A. Jimenez-Alba, K. Landsteiner, L. Melgar and I.S. Landea, Holographic type II Goldstone bosons, JHEP 07 (2013) 108 [arXiv:1302.5641] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Baggioli, S. Grieninger and L. Li, Magnetophonons & type-B Goldstones from hydrodynamics to holography, JHEP 09 (2020) 037 [arXiv:2005.01725] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Ishigaki and M. Matsumoto, Nambu-Goldstone modes in non-equilibrium systems from AdS/CFT correspondence, JHEP 04 (2021) 040 [arXiv:2012.01177] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. D.M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys. 4 (2018) 005 [arXiv:1707.08577] [INSPIRE].

    Article  ADS  Google Scholar 

  30. N. Iqbal and K. Macfarlane, Higher-form symmetry breaking and holographic flavour, arXiv:2107.00373 [INSPIRE].

  31. K. Hinterbichler, D.M. Hofman, A. Joyce and G. Mathys, Gravity as a gapless phase and biform symmetries, arXiv:2205.12272 [INSPIRE].

  32. M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

  34. X. Cao, S. Qiu, H. Liu and D. Li, Thermal properties of light mesons from holography, JHEP 08 (2021) 005 [arXiv:2102.10946] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Ammon, M. Baggioli and A. Jiménez-Alba, A unified description of translational symmetry breaking in holography, JHEP 09 (2019) 124 [arXiv:1904.05785] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Universal relaxation in a holographic metallic density wave phase, Phys. Rev. Lett. 123 (2019) 211602 [arXiv:1812.08118] [INSPIRE].

  37. T. Andrade and A. Krikun, Coherent vs incoherent transport in holographic strange insulators, JHEP 05 (2019) 119 [arXiv:1812.08132] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. A. Donos, P. Kailidis and C. Pantelidou, Dissipation in holographic superfluids, JHEP 09 (2021) 134 [arXiv:2107.03680] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. M. Ammon, D. Arean, M. Baggioli, S. Gray and S. Grieninger, Pseudo-spontaneous U(1) symmetry breaking in hydrodynamics and holography, JHEP 03 (2022) 015 [arXiv:2111.10305] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. R. Argurio, A. Marzolla, A. Mezzalira and D. Musso, Analytic pseudo-Goldstone bosons, JHEP 03 (2016) 012 [arXiv:1512.03750] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. A. Amoretti, D. Areán, R. Argurio, D. Musso and L.A. Pando Zayas, A holographic perspective on phonons and pseudo-phonons, JHEP 05 (2017) 051 [arXiv:1611.09344] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. M. Baggioli and S. Grieninger, Zoology of solid & fluid holography — Goldstone modes and phase relaxation, JHEP 10 (2019) 235 [arXiv:1905.09488] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Hydrodynamics of broken global symmetries in the bulk, JHEP 10 (2019) 218 [arXiv:1905.00398] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. Amoretti, D. Arean, D.K. Brattan and N. Magnoli, Hydrodynamic magneto-transport in charge density wave states, JHEP 05 (2021) 027 [arXiv:2101.05343] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Incoherent hydrodynamics and density waves, Class. Quant. Grav. 37 (2020) 045005 [arXiv:1906.03132] [INSPIRE].

  46. L.V. Delacrétaz, B. Goutéraux and V. Ziogas, Damping of pseudo-Goldstone fields, Phys. Rev. Lett. 128 (2022) 141601 [arXiv:2111.13459] [INSPIRE].

  47. M. Baggioli and M. Landry, Effective field theory for quasicrystals and phasons dynamics, SciPost Phys. 9 (2020) 062 [arXiv:2008.05339] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Baggioli, Homogeneous holographic viscoelastic models and quasicrystals, Phys. Rev. Res. 2 (2020) 022022 [arXiv:2001.06228] [INSPIRE].

  49. E. Grossi, A. Soloviev, D. Teaney and F. Yan, Transport and hydrodynamics in the chiral limit, Phys. Rev. D 102 (2020) 014042 [arXiv:2005.02885] [INSPIRE].

  50. J. Armas, A. Jain and R. Lier, Approximate symmetries, pseudo-Goldstones, and the second law of thermodynamics, arXiv:2112.14373 [INSPIRE].

  51. K. Rajagopal and F. Wilczek, Static and dynamic critical phenomena at a second order QCD phase transition, Nucl. Phys. B 399 (1993) 395 [hep-ph/9210253] [INSPIRE].

  52. D.T. Son, Hydrodynamics of nuclear matter in the chiral limit, Phys. Rev. Lett. 84 (2000) 3771 [hep-ph/9912267] [INSPIRE].

  53. E. Grossi, A. Soloviev, D. Teaney and F. Yan, Soft pions and transport near the chiral critical point, Phys. Rev. D 104 (2021) 034025 [arXiv:2101.10847] [INSPIRE].

  54. A. Florio, E. Grossi, A. Soloviev and D. Teaney, Dynamics of the O(4) critical point in QCD, Phys. Rev. D 105 (2022) 054512 [arXiv:2111.03640] [INSPIRE].

  55. D.M. Rodrigues, D. Li, E. Folco Capossoli and H. Boschi-Filho, Chiral symmetry breaking and restoration in 2 + 1 dimensions from holography: magnetic and inverse magnetic catalysis, Phys. Rev. D 98 (2018) 106007 [arXiv:1807.11822] [INSPIRE].

  56. P. Colangelo, F. Giannuzzi, S. Nicotri and V. Tangorra, Temperature and quark density effects on the chiral condensate: an AdS/QCD study, Eur. Phys. J. C 72 (2012) 2096 [arXiv:1112.4402] [INSPIRE].

    Article  ADS  Google Scholar 

  57. N. Evans, C. Miller and M. Scott, Inverse magnetic catalysis in bottom-up holographic QCD, Phys. Rev. D 94 (2016) 074034 [arXiv:1604.06307] [INSPIRE].

  58. S.P. Bartz and T. Jacobson, Chiral phase transition and meson melting from AdS/QCD, Phys. Rev. D 94 (2016) 075022 [arXiv:1607.05751] [INSPIRE].

  59. A. Ballon-Bayona, L.A.H. Mamani and D.M. Rodrigues, Spontaneous chiral symmetry breaking in holographic soft wall models, Phys. Rev. D 104 (2021) 126029 [arXiv:2107.10983] [INSPIRE].

  60. Y.-Q. Sui, Y.-L. Wu, Z.-F. Xie and Y.-B. Yang, Prediction for the mass spectra of resonance mesons in the soft-wall AdS/QCD with a modified 5D metric, Phys. Rev. D 81 (2010) 014024 [arXiv:0909.3887] [INSPIRE].

  61. T. Gherghetta, J.I. Kapusta and T.M. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model, Phys. Rev. D 79 (2009) 076003 [arXiv:0902.1998] [INSPIRE].

  62. D. Li, M. Huang and Q.-S. Yan, A dynamical soft-wall holographic QCD model for chiral symmetry breaking and linear confinement, Eur. Phys. J. C 73 (2013) 2615 [arXiv:1206.2824] [INSPIRE].

    Article  ADS  Google Scholar 

  63. D. Li and M. Huang, Dynamical holographic QCD model for glueball and light meson spectra, JHEP 11 (2013) 088 [arXiv:1303.6929] [INSPIRE].

    Article  ADS  Google Scholar 

  64. D. Li and M. Huang, Chiral phase transition of QCD with Nf = 2 + 1 flavors from holography, JHEP 02 (2017) 042 [arXiv:1610.09814] [INSPIRE].

    Article  ADS  Google Scholar 

  65. K. Chelabi, Z. Fang, M. Huang, D. Li and Y.-L. Wu, Chiral phase transition in the soft-wall model of AdS/QCD, JHEP 04 (2016) 036 [arXiv:1512.06493] [INSPIRE].

    ADS  Google Scholar 

  66. K. Chelabi, Z. Fang, M. Huang, D. Li and Y.-L. Wu, Realization of chiral symmetry breaking and restoration in holographic QCD, Phys. Rev. D 93 (2016) 101901 [arXiv:1511.02721] [INSPIRE].

  67. J. Chen, S. He, M. Huang and D. Li, Critical exponents of finite temperature chiral phase transition in soft-wall AdS/QCD models, JHEP 01 (2019) 165 [arXiv:1810.07019] [INSPIRE].

    Article  ADS  Google Scholar 

  68. Z. Fang, S. He and D. Li, Chiral and deconfining phase transitions from holographic QCD study, Nucl. Phys. B 907 (2016) 187 [arXiv:1512.04062] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. M.A. Martin Contreras, E. Folco Capossoli, D. Li, A. Vega and H. Boschi-Filho, Pion form factor from an AdS deformed background, Nucl. Phys. B 977 (2022) 115726 [arXiv:2104.04640] [INSPIRE].

  70. X. Cao, H. Liu and D. Li, Pion quasiparticles and QCD phase transitions at finite temperature and isospin density from holography, Phys. Rev. D 102 (2020) 126014 [arXiv:2009.00289] [INSPIRE].

  71. M. Lv, D. Li and S. He, Pion condensation in a soft-wall AdS/QCD model, JHEP 11 (2019) 026 [arXiv:1811.03828] [INSPIRE].

    Article  ADS  Google Scholar 

  72. B. Sheng, Y. Wang, X. Wang and L. Yu, Pole and screening masses of neutral pions in a hot and magnetized medium: a comprehensive study in the Nambu-Jona-Lasinio model, Phys. Rev. D 103 (2021) 094001 [arXiv:2010.05716] [INSPIRE].

  73. R.A. Davison, L.V. Delacrétaz, B. Goutéraux and S.A. Hartnoll, Hydrodynamic theory of quantum fluctuating superconductivity, Phys. Rev. B 94 (2016) 054502 [Erratum ibid. 96 (2017) 059902] [arXiv:1602.08171] [INSPIRE].

  74. L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev. B 96 (2017) 195128 [arXiv:1702.05104] [INSPIRE].

  75. A. Jain, Theory of non-Abelian superfluid dynamics, Phys. Rev. D 95 (2017) 121701 [arXiv:1610.05797] [INSPIRE].

  76. C. Pujol and D. Davesne, Relativistic dissipative hydrodynamics with spontaneous symmetry breaking, Phys. Rev. C 67 (2003) 014901 [hep-ph/0204355] [INSPIRE].

  77. D.T. Son and M.A. Stephanov, Pion propagation near the QCD chiral phase transition, Phys. Rev. Lett. 88 (2002) 202302 [hep-ph/0111100] [INSPIRE].

  78. D.T. Son and M.A. Stephanov, Real time pion propagation in finite temperature QCD, Phys. Rev. D 66 (2002) 076011 [hep-ph/0204226] [INSPIRE].

  79. A. Soloviev, Transport near the chiral critical point, EPJ Web Conf. 258 (2022) 05008 [arXiv:2111.11375] [INSPIRE].

    Article  Google Scholar 

  80. A. Donos and C. Pantelidou, Higgs/amplitude mode dynamics from holography, JHEP 08 (2022) 246 [arXiv:2205.06294] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. A. Donos and P. Kailidis, Nearly critical holographic superfluids, JHEP 12 (2022) 028 [arXiv:2210.06513] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. B.I. Halperin and P.C. Hohenberg, Hydrodynamic theory of spin waves, Phys. Rev. 188 (1969) 898 [INSPIRE].

    Article  ADS  Google Scholar 

  83. J.M. Torres-Rincon and D. Teaney, Kinetics of hydrodynamic pions in chiral perturbation theory, Phys. Rev. D 106 (2022) 056012 [arXiv:2201.10495] [INSPIRE].

  84. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

  85. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

  86. Y. Chen and M. Huang, Holographic QCD model for Nf = 4, Phys. Rev. D 105 (2022) 026021 [arXiv:2110.08215] [INSPIRE].

  87. A. Cherman, T.D. Cohen and E.S. Werbos, The chiral condensate in holographic models of QCD, Phys. Rev. C 79 (2009) 045203 [arXiv:0804.1096] [INSPIRE].

  88. Z. Fang, Y.-L. Wu and L. Zhang, Chiral phase transition and meson spectrum in improved soft-wall AdS/QCD, Phys. Lett. B 762 (2016) 86 [arXiv:1604.02571] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  89. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  90. T. Andrade, M. Baggioli and A. Krikun, Phase relaxation and pattern formation in holographic gapless charge density waves, JHEP 03 (2021) 292 [arXiv:2009.05551] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  91. X. Cao, J. Chao, H. Liu and D. Li, Thermalization and prethermalization in the soft-wall AdS/QCD model, arXiv:2204.11604 [INSPIRE].

  92. T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP 02 (2018) 085 [arXiv:1708.08306] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  93. A. Donos and P. Kailidis, Dissipative effects in finite density holographic superfluids, JHEP 11 (2022) 053 [arXiv:2209.06893] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of physics and Siyuan Laboratory, Jinan University, Guangzhou, 510632, China

    Xuanmin Cao, Hui Liu & Danning Li

  2. Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China

    Matteo Baggioli

  3. Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China

    Matteo Baggioli

Authors
  1. Xuanmin Cao
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Matteo Baggioli
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Hui Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Danning Li
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Danning Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2210.09088

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Baggioli, M., Liu, H. et al. Pion dynamics in a soft-wall AdS-QCD model. J. High Energ. Phys. 2022, 113 (2022). https://doi.org/10.1007/JHEP12(2022)113

Download citation

  • Received: 25 October 2022

  • Accepted: 05 December 2022

  • Published: 19 December 2022

  • DOI: https://doi.org/10.1007/JHEP12(2022)113

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Finite Temperature or Finite Density
  • Spontaneous Symmetry Breaking

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature