Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Missing scalars at the cosmological collider
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Scale-invariant scalar field dark matter through the Higgs portal

22 May 2018

Catarina Cosme, João G. Rosa & O. Bertolami

Cosmological constraints on dark scalar

29 March 2022

Masahiro Ibe, Shin Kobayashi, … Satoshi Shirai

Probing light dark scalars with future experiments

30 March 2021

Enrico Bertuzzo & Marco Taoso

Phenomenology of scotogenic scalar dark matter

01 October 2020

Ivania M. Ávila, Valentina De Romeri, … José W. F. Valle

Scalar field couplings to quadratic curvature and decay into gravitons

13 May 2022

Yohei Ema, Kyohei Mukaida & Kazunori Nakayama

A global analysis of resonance-enhanced light scalar dark matter

19 January 2023

Tobias Binder, Sreemanti Chakraborti, … Yu Watanabe

Scalaron–Higgs inflation reloaded: Higgs-dependent scalaron mass and primordial black hole dark matter

26 May 2021

Anirudh Gundhi & Christian F. Steinwachs

Gravitational Coleman-Weinberg mechanism

24 February 2023

Clara Álvarez-Luna, Sergio de la Calle-Leal, … Juan José Sanz-Cillero

The scalar chemical potential in cosmological collider physics

09 February 2021

Arushi Bodas, Soubhik Kumar & Raman Sundrum

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 15 December 2021

Missing scalars at the cosmological collider

  • Qianshu Lu  ORCID: orcid.org/0000-0002-9277-11301,
  • Matthew Reece1 &
  • Zhong-Zhi Xianyu2 

Journal of High Energy Physics volume 2021, Article number: 98 (2021) Cite this article

  • 64 Accesses

  • 8 Citations

  • 8 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Light scalar fields typically develop spatially varying backgrounds during inflation. Very often they do not directly affect the density perturbations, but interact with other fields that do leave nontrivial signals in primordial perturbations. In this sense they become “missing scalars” at the cosmological collider. We study potentially observable signals of these missing scalars, focusing on a special example where a missing scalar distorts the usual oscillatory features in the squeezed bispectrum. The distortion is also a useful signal distinguishing the de Sitter background induced thermal mass from a constant intrinsic mass.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. D. Meerburg et al., Primordial Non-Gaussianity, arXiv:1903.04409 [INSPIRE].

  2. X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

    Article  ADS  Google Scholar 

  3. X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    Article  ADS  Google Scholar 

  4. X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP 09 (2012) 021 [arXiv:1205.0160] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Pi and M. Sasaki, Curvature Perturbation Spectrum in Two-field Inflation with a Turning Trajectory, JCAP 10 (2012) 051 [arXiv:1205.0161] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP 11 (2013) 043 [arXiv:1306.3691] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  8. X. Chen, Y. Wang and Z.-Z. Xianyu, Loop Corrections to Standard Model Fields in Inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. H. Lee, D. Baumann and G. L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Background of the Cosmological Collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

    Article  ADS  Google Scholar 

  11. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Mass Spectrum in Inflationary Universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. H. An, M. McAneny, A. K. Ridgway and M. B. Wise, Quasi Single Field Inflation in the non-perturbative regime, JHEP 06 (2018) 105 [arXiv:1706.09971] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP 05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh Diagrammatics for Primordial Perturbations, JCAP 12 (2017) 006 [arXiv:1703.10166] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino Signatures in Primordial Non-Gaussianities, JHEP 09 (2018) 022 [arXiv:1805.02656] [INSPIRE].

    Article  ADS  Google Scholar 

  16. Y.-P. Wu, Higgs as heavy-lifted physics during inflation, JHEP 04 (2019) 125 [arXiv:1812.10654] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. L. Li, T. Nakama, C. M. Sou, Y. Wang and S. Zhou, Gravitational Production of Superheavy Dark Matter and Associated Cosmological Signatures, JHEP 07 (2019) 067 [arXiv:1903.08842] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. S. Lu, Y. Wang and Z.-Z. Xianyu, A Cosmological Higgs Collider, JHEP 02 (2020) 011 [arXiv:1907.07390] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Hook, J. Huang and D. Racco, Searches for other vacua. Part II. A new Higgstory at the cosmological collider, JHEP 01 (2020) 105 [arXiv:1907.10624] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Hook, J. Huang and D. Racco, Minimal signatures of the Standard Model in non-Gaussianities, Phys. Rev. D 101 (2020) 023519 [arXiv:1908.00019] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Kumar and R. Sundrum, Cosmological Collider Physics and the Curvaton, JHEP 04 (2020) 077 [arXiv:1908.11378] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. L.-T. Wang and Z.-Z. Xianyu, In Search of Large Signals at the Cosmological Collider, JHEP 02 (2020) 044 [arXiv:1910.12876] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D.-G. Wang, On the inflationary massive field with a curved field manifold, JCAP 01 (2020) 046 [arXiv:1911.04459] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. Wang and Y. Zhu, Cosmological Collider Signatures of Massive Vectors from Non-Gaussian Gravitational Waves, JCAP 04 (2020) 049 [arXiv:2001.03879] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Li, S. Lu, Y. Wang and S. Zhou, Cosmological Signatures of Superheavy Dark Matter, JHEP 07 (2020) 231 [arXiv:2002.01131] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. L.-T. Wang and Z.-Z. Xianyu, Gauge Boson Signals at the Cosmological Collider, JHEP 11 (2020) 082 [arXiv:2004.02887] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Fan and Z.-Z. Xianyu, A Cosmic Microscope for the Preheating Era, JHEP 01 (2021) 021 [arXiv:2005.12278] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Aoki and M. Yamaguchi, Disentangling mass spectra of multiple fields in cosmological collider, JHEP 04 (2021) 127 [arXiv:2012.13667] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Bodas, S. Kumar and R. Sundrum, The Scalar Chemical Potential in Cosmological Collider Physics, JHEP 02 (2021) 079 [arXiv:2010.04727] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. P. D. Meerburg, M. Münchmeyer, J. B. Muñoz and X. Chen, Prospects for Cosmological Collider Physics, JCAP 03 (2017) 050 [arXiv:1610.06559] [INSPIRE].

    Article  ADS  Google Scholar 

  31. K. Kogai, K. Akitsu, F. Schmidt and Y. Urakawa, Galaxy imaging surveys as spin-sensitive detector for cosmological colliders, JCAP 03 (2021) 060 [arXiv:2009.05517] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. N. Arkani-Hamed, D. Baumann, H. Lee and G. L. Pimentel, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP 04 (2020) 105 [arXiv:1811.00024] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G. L. Pimentel, The cosmological bootstrap: weight-shifting operators and scalar seeds, JHEP 12 (2020) 204 [arXiv:1910.14051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G. L. Pimentel, The Cosmological Bootstrap: Spinning Correlators from Symmetries and Factorization, SciPost Phys. 11 (2021) 071 [arXiv:2005.04234] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, in Community Summer Study 2013: Snowmass on the Mississippi, (2013) [arXiv:1311.0029] [INSPIRE].

  36. S. Lu, Axion Isocurvature Collider, arXiv:2103.05958 [INSPIRE].

  37. A. A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Rajaraman, On the proper treatment of massless fields in Euclidean de Sitter space, Phys. Rev. D 82 (2010) 123522 [arXiv:1008.1271] [INSPIRE].

    Article  ADS  Google Scholar 

  39. V. Gorbenko and L. Senatore, λϕ4 in dS, arXiv:1911.00022 [INSPIRE].

  40. M. Mirbabayi, Infrared dynamics of a light scalar field in de Sitter, JCAP 12 (2020) 006 [arXiv:1911.00564] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M. Baumgart and R. Sundrum, de Sitter Diagrammar and the Resummation of Time, JHEP 07 (2020) 119 [arXiv:1912.09502] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Jeong and M. Kamionkowski, Clustering Fossils from the Early Universe, Phys. Rev. Lett. 108 (2012) 251301 [arXiv:1203.0302] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Dai, D. Jeong and M. Kamionkowski, Seeking Inflation Fossils in the Cosmic Microwave Background, Phys. Rev. D 87 (2013) 103006 [arXiv:1302.1868] [INSPIRE].

    Article  ADS  Google Scholar 

  44. Y. Wang, Z. Wang and Y. Zhu, Non-standard primordial clocks from induced mass in alternative to inflation scenarios, JCAP 11 (2020) 026 [arXiv:2007.09677] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. D. Marolf and I. A. Morrison, The IR stability of de Sitter: Loop corrections to scalar propagators, Phys. Rev. D 82 (2010) 105032 [arXiv:1006.0035] [INSPIRE].

    Article  ADS  Google Scholar 

  46. X. Chen, M. H. Namjoo and Y. Wang, Quantum Primordial Standard Clocks, JCAP 02 (2016) 013 [arXiv:1509.03930] [INSPIRE].

    ADS  Google Scholar 

  47. D. P. Jatkar, L. Leblond and A. Rajaraman, On the Decay of Massive Fields in de Sitter, Phys. Rev. D 85 (2012) 024047 [arXiv:1107.3513] [INSPIRE].

    Article  ADS  Google Scholar 

  48. D. Boyanovsky, Condensates and quasiparticles in inflationary cosmology: mass generation and decay widths, Phys. Rev. D 85 (2012) 123525 [arXiv:1203.3903] [INSPIRE].

    Article  ADS  Google Scholar 

  49. D. Krotov and A. M. Polyakov, Infrared Sensitivity of Unstable Vacua, Nucl. Phys. B 849 (2011) 410 [arXiv:1012.2107] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. X. Chen, P. D. Meerburg and M. Münchmeyer, The Future of Primordial Features with 21 cm Tomography, JCAP 09 (2016) 023 [arXiv:1605.09364] [INSPIRE].

    Article  ADS  Google Scholar 

  51. X. Chen, C. Dvorkin, Z. Huang, M. H. Namjoo and L. Verde, The Future of Primordial Features with Large-Scale Structure Surveys, JCAP 11 (2016) 014 [arXiv:1605.09365] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Ballardini, F. Finelli, C. Fedeli and L. Moscardini, Probing primordial features with future galaxy surveys, JCAP 10 (2016) 041 [Erratum ibid. 04 (2018) E01] [arXiv:1606.03747] [INSPIRE].

  53. Y. Xu, J. Hamann and X. Chen, Precise measurements of inflationary features with 21 cm observations, Phys. Rev. D 94 (2016) 123518 [arXiv:1607.00817] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Moradinezhad Dizgah, H. Lee, J. B. Muñoz and C. Dvorkin, Galaxy Bispectrum from Massive Spinning Particles, JCAP 05 (2018) 013 [arXiv:1801.07265] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Scoccimarro, E. Sefusatti and M. Zaldarriaga, Probing primordial non-Gaussianity with large-scale structure, Phys. Rev. D 69 (2004) 103513 [astro-ph/0312286] [INSPIRE].

    Article  ADS  Google Scholar 

  56. T. Baldauf, M. Mirbabayi, M. Simonović and M. Zaldarriaga, LSS constraints with controlled theoretical uncertainties, arXiv:1602.00674 [INSPIRE].

  57. X. Chen, Primordial Features as Evidence for Inflation, JCAP 01 (2012) 038 [arXiv:1104.1323] [INSPIRE].

    Article  Google Scholar 

  58. X. Chen, M. H. Namjoo and Y. Wang, Models of the Primordial Standard Clock, JCAP 02 (2015) 027 [arXiv:1411.2349] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA

    Qianshu Lu & Matthew Reece

  2. Department of Physics, Tsinghua University, Beijing, 100084, China

    Zhong-Zhi Xianyu

Authors
  1. Qianshu Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Matthew Reece
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zhong-Zhi Xianyu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Qianshu Lu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2108.11385

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Reece, M. & Xianyu, ZZ. Missing scalars at the cosmological collider. J. High Energ. Phys. 2021, 98 (2021). https://doi.org/10.1007/JHEP12(2021)098

Download citation

  • Received: 12 September 2021

  • Revised: 11 November 2021

  • Accepted: 30 November 2021

  • Published: 15 December 2021

  • DOI: https://doi.org/10.1007/JHEP12(2021)098

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.