Abstract
A novel approach to study the properties of models with quantum-deformed relativistic symmetries relies on a noncommutative space of worldlines rather than the usual noncommutative spacetime. In this setting, spacetime can be reconstructed as the set of events, that are identified as the crossing of different worldlines. We lay down the basis for this construction for the κ-Poincaré model, analyzing the fuzzy properties of κ-deformed time-like worldlines and the resulting fuzziness of the reconstructed events.
Article PDF
References
C.A. Mead, Possible Connection Between Gravitation and Fundamental Length, Phys. Rev. 135 (1964) B849 [INSPIRE].
D. Amati, M. Ciafaloni and G. Veneziano, Can Space-Time Be Probed Below the String Size?, Phys. Lett. B 216 (1989) 41 [INSPIRE].
D.V. Ahluwalia, Quantum measurements, gravitation, and locality, Phys. Lett. B 339 (1994) 301 [gr-qc/9308007] [INSPIRE].
L.J. Garay, Quantum gravity and minimum length, Int. J. Mod. Phys. A 10 (1995) 145 [gr-qc/9403008] [INSPIRE].
R. Loll, Quantum Gravity from Causal Dynamical Triangulations: A Review, Class. Quant. Grav. 37 (2020) 013002 [arXiv:1905.08669] [INSPIRE].
S. Surya, The causal set approach to quantum gravity, Living Rev. Rel. 22 (2019) 5 [arXiv:1903.11544] [INSPIRE].
H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [INSPIRE].
S. Doplicher, K. Fredenhagen and J.E. Roberts, Space-time quantization induced by classical gravity, Phys. Lett. B 331 (1994) 39 [INSPIRE].
H.-J. Matschull and M. Welling, Quantum mechanics of a point particle in (2 + 1)-dimensional gravity, Class. Quant. Grav. 15 (1998) 2981 [gr-qc/9708054] [INSPIRE].
R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].
L. Freidel and E.R. Livine, 3D Quantum Gravity and Effective Noncommutative Quantum Field Theory, Phys. Rev. Lett. 96 (2006) 221301 [hep-th/0512113] [INSPIRE].
G. Amelino-Camelia, G. Gubitosi and F. Mercati, Discreteness of area in noncommutative space, Phys. Lett. B 676 (2009) 180 [arXiv:0812.3663] [INSPIRE].
A.P. Balachandran, A. Ibort, G. Marmo and M. Martone, Covariant Quantum Fields on Noncommutative Spacetimes, JHEP 03 (2011) 057 [arXiv:1009.5136] [INSPIRE].
G. Amelino-Camelia, Testable scenario for relativity with minimum length, Phys. Lett. B 510 (2001) 255 [hep-th/0012238] [INSPIRE].
J. Kowalski-Glikman, Observer independent quantum of mass, Phys. Lett. A 286 (2001) 391 [hep-th/0102098] [INSPIRE].
G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D 11 (2002) 35 [gr-qc/0012051] [INSPIRE].
J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002) 190403 [hep-th/0112090] [INSPIRE].
J. Lukierski and A. Nowicki, Doubly special relativity versus kappa deformation of relativistic kinematics, Int. J. Mod. Phys. A 18 (2003) 7 [hep-th/0203065] [INSPIRE].
A. Ballesteros, N.R. Bruno and F.J. Herranz, A New doubly special relativity theory from a quantum conformal algebra, J. Phys. A 36 (2003) 10493 [hep-th/0305033] [INSPIRE].
L. Freidel, J. Kowalski-Glikman and L. Smolin, 2 + 1 gravity and doubly special relativity, Phys. Rev. D 69 (2004) 044001 [hep-th/0307085] [INSPIRE].
G. Amelino-Camelia, L. Smolin and A. Starodubtsev, Quantum symmetry, the cosmological constant and Planck scale phenomenology, Class. Quant. Grav. 21 (2004) 3095 [hep-th/0306134] [INSPIRE].
G. Amelino-Camelia, Doubly-Special Relativity: Facts, Myths and Some Key Open Issues, Symmetry 2 (2010) 230 [arXiv:1003.3942] [INSPIRE].
G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, Relative locality: A deepening of the relativity principle, Gen. Rel. Grav. 43 (2011) 2547 [arXiv:1106.0313] [INSPIRE].
G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, The principle of relative locality, Phys. Rev. D 84 (2011) 084010 [arXiv:1101.0931] [INSPIRE].
G. Amelino-Camelia, M. Arzano, J. Kowalski-Glikman, G. Rosati and G. Trevisan, Relative-locality distant observers and the phenomenology of momentum-space geometry, Class. Quant. Grav. 29 (2012) 075007 [arXiv:1107.1724] [INSPIRE].
J. Kowalski-Glikman, Living in Curved Momentum Space, Int. J. Mod. Phys. A 28 (2013) 1330014 [arXiv:1303.0195] [INSPIRE].
G. Gubitosi and F. Mercati, Relative Locality in κ-Poincaré, Class. Quant. Grav. 30 (2013) 145002 [arXiv:1106.5710] [INSPIRE].
G. Amelino-Camelia, G. Gubitosi and G. Palmisano, Pathways to relativistic curved momentum spaces: de Sitter case study, Int. J. Mod. Phys. D 25 (2016) 1650027 [arXiv:1307.7988] [INSPIRE].
A. Ballesteros, G. Gubitosi, I. Gutiérrez-Sagredo and F.J. Herranz, Curved momentum spaces from quantum groups with cosmological constant, Phys. Lett. B 773 (2017) 47 [arXiv:1707.09600] [INSPIRE].
A. Ballesteros, G. Gubitosi, I. Gutiérrez-Sagredo and F.J. Herranz, Curved momentum spaces from quantum (anti–)de Sitter groups in (3 + 1) dimensions, Phys. Rev. D 97 (2018) 106024 [arXiv:1711.05050] [INSPIRE].
A. Ballesteros, I. Gutierrez-Sagredo and F.J. Herranz, Noncommutative spaces of worldlines, Phys. Lett. B 792 (2019) 175 [arXiv:1902.09132] [INSPIRE].
A. Ballesteros, N.R. Bruno and F.J. Herranz, Noncommutative Relativistic Spacetimes and Worldlines from 2 + 1 Quantum (Anti-)de Sitter Groups, Adv. High Energy Phys. 2017 (2017) 7876942 [hep-th/0401244] [INSPIRE].
S. Majid, Hopf Algebras for Physics at the Planck Scale, Class. Quant. Grav. 5 (1988) 1587 [INSPIRE].
V. Chari and A. Pressley, A guide to Quantum Groups, Cambridge University Press, Cambridge (1994).
S. Majid, Foundations of quantum group theory Cambridge University Press, Cambridge (1995) [DOI].
J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, Q deformation of Poincaré algebra, Phys. Lett. B 264 (1991) 331 [INSPIRE].
J. Lukierski, A. Nowicki and H. Ruegg, New quantum Poincaré algebra and κ-deformed field theory, Phys. Lett. B 293 (1992) 344 [INSPIRE].
S. Majid and H. Ruegg, Bicrossproduct structure of kappa Poincaré group and noncommutative geometry, Phys. Lett. B 334 (1994) 348 [hep-th/9405107] [INSPIRE].
A. Ballesteros, F.J. Herranz, M.A. del Olmo and M. Santander, A new ‘null plane’ quantum Poincaré algebra, Phys. Lett. B 351 (1995) 137 [q-alg/9502019] [INSPIRE].
S. Zakrzewski, Poisson Structures on the Poincaré Group, Commun. Math. Phys. 185 (1997) 285 [q-alg/9602001].
A. Ballesteros, N.R. Bruno and F.J. Herranz, A noncommutative Minkowskian space-time from a quantum AdS algebra, Phys. Lett. B 574 (2003) 276 [hep-th/0306089] [INSPIRE].
A. Borowiec, J. Lukierski and V.N. Tolstoy, Quantum deformations of D = 4 Euclidean, Lorentz, Kleinian and quaternionic \( \mathfrak{o} \)*(4) symmetries in unified \( \mathfrak{o} \)(4; ℂ) setting, Phys. Lett. B 754 (2016) 176 [arXiv:1511.03653] [INSPIRE].
A. Borowiec, J. Lukierski and V.N. Tolstoy, Quantum deformations of D = 4 Euclidean, Lorentz, Kleinian and quaternionic \( \mathfrak{o} \)*(4) symmetries in unified \( \mathfrak{o} \)(4; ℂ setting — Addendum, Phys. Lett. B 770 (2017) 426 [arXiv:1704.06852] [INSPIRE].
F. Mercati and M. Sergola, Physical Constraints on Quantum Deformations of Spacetime Symmetries, Nucl. Phys. B 933 (2018) 320 [arXiv:1802.09483] [INSPIRE].
A. Ballesteros and F. Mercati, Extended noncommutative Minkowski spacetimes and hybrid gauge symmetries, Eur. Phys. J. C 78 (2018) 615 [arXiv:1805.07099] [INSPIRE].
T. Jurić, S. Meljanac, D. Pikutić and R. Štrajn, Toward the classification of differential calculi on κ-Minkowski space and related field theories, JHEP 07 (2015) 055 [arXiv:1502.02972] [INSPIRE].
S. Meljanac, A. Samsarov and R. Strajn, Kappa-deformation of Heisenberg algebra and coalgebra: generalized Poincaré algebras and R-matrix, JHEP 08 (2012) 127 [arXiv:1204.4324] [INSPIRE].
F. Lizzi, M. Manfredonia, F. Mercati and T. Poulain, Localization and Reference Frames in κ-Minkowski Spacetime, Phys. Rev. D 99 (2019) 085003 [arXiv:1811.08409] [INSPIRE].
F. Lizzi, M. Manfredonia and F. Mercati, Localizability in κ-Minkowski spacetime, Int. J. Geom. Meth. Mod. Phys. 17 (2020) 2040010 [arXiv:1912.07098] [INSPIRE].
E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749 [INSPIRE].
A. Ballesteros, F.J. Herranz, M.A. del Olmo and M. Santander, Quantum (2 + 1) kinematical algebras: a global approach, J. Phys. A 27 (1994) 1283.
A. Ballesteros, F.J. Herranz and C. Meusburger, A (2 + 1) non-commutative Drinfel’d double spacetime with cosmological constant, Phys. Lett. B 732 (2014) 201 [arXiv:1402.2884] [INSPIRE].
A. Ballesteros, F.J. Herranz, F. Musso and P. Naranjo, The κ-(A)dS quantum algebra in (3 + 1) dimensions, Phys. Lett. B 766 (2017) 205 [arXiv:1612.03169] [INSPIRE].
A. Ballesteros, I. Gutierrez-Sagredo and F.J. Herranz, The κ-(A)dS noncommutative spacetime, Phys. Lett. B 796 (2019) 93 [arXiv:1905.12358] [INSPIRE].
A. Ballesteros, G. Gubitosi and F.J. Herranz, Lorentzian Snyder spacetimes and their Galilei and Carroll limits from projective geometry, Class. Quant. Grav. 37 (2020) 195021 [arXiv:1912.12878] [INSPIRE].
A. Ballesteros, G. Gubitosi, I. Gutierrez-Sagredo and F.J. Herranz, The κ-Newtonian and κ-Carrollian algebras and their noncommutative spacetimes, Phys. Lett. B 805 (2020) 135461 [arXiv:2003.03921] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2109.09699
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ballesteros, A., Gubitosi, G., Gutierrez-Sagredo, I. et al. Fuzzy worldlines with κ-Poincaré symmetries. J. High Energ. Phys. 2021, 80 (2021). https://doi.org/10.1007/JHEP12(2021)080
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2021)080