Skip to main content

Higgs self-coupling measurements using deep learning in the \( b\overline{b}b\overline{b} \) final state

A preprint version of the article is available at arXiv.

Abstract

Measuring the Higgs trilinear self-coupling λhhh is experimentally demanding but fundamental for understanding the shape of the Higgs potential. We present a comprehensive analysis strategy for the HL-LHC using di-Higgs events in the four b-quark channel (hh → 4b), extending current methods in several directions. We perform deep learning to suppress the formidable multijet background with dedicated optimisation for BSM λhhh scenarios. We compare the λhhh constraining power of events using different multiplicities of large radius jets with a two-prong structure that reconstruct boosted hbb decays. We show that current uncertainties in the SM top Yukawa coupling yt can modify λhhh constraints by 20%. For SM yt, we find prospects of 0.8 < \( {\lambda}_{hhh}/{\lambda}_{hhh}^{\mathrm{SM}} \) < 6.6 at 68% CL under simplified assumptions for 3000 fb1 of HL-LHC data. Our results provide a careful assessment of di-Higgs identification and machine learning techniques for all-hadronic measurements of the Higgs self-coupling and sharpens the requirements for future improvement.

References

  1. [1]

    J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  3. [3]

    ATLAS collaboration, Physics at a High-Luminosity LHC with ATLAS, arXiv:1307.7292 [INSPIRE].

  4. [4]

    CMS collaboration, Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process, in Community Summer Study 2013: Snowmass on the Mississippi, (2013) [arXiv:1307.7135] [INSPIRE].

  5. [5]

    M. Cepeda et al., Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 221 [arXiv:1902.00134] [INSPIRE].

  6. [6]

    ATLAS and CMS collaborations, Report on the physics at the HL-LHC, and perspectives for the HE-LHC: Collection of notes from ATLAS and CMS, CERN Yellow Rep. Monogr. 7 (2019) [arXiv:1902.10229] [INSPIRE].

  7. [7]

    J. Alison et al., Higgs boson potential at colliders: Status and perspectives, Rev. Phys. 5 (2020) 100045 [arXiv:1910.00012] [INSPIRE].

  8. [8]

    C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].

  9. [9]

    J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair Production of a 125 GeV Higgs Boson in MSSM and NMSSM at the LHC, JHEP 04 (2013) 134 [arXiv:1301.6437] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    M. Gouzevitch, A. Oliveira, J. Rojo, R. Rosenfeld, G.P. Salam and V. Sanz, Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production, JHEP 07 (2013) 148 [arXiv:1303.6636] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE].

  12. [12]

    C. Han, X. Ji, L. Wu, P. Wu and J.M. Yang, Higgs pair production with SUSY QCD correction: revisited under current experimental constraints, JHEP 04 (2014) 003 [arXiv:1307.3790] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    K. Nishiwaki, S. Niyogi and A. Shivaji, ttH Anomalous Coupling in Double Higgs Production, JHEP 04 (2014) 011 [arXiv:1309.6907] [INSPIRE].

  14. [14]

    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    B. Hespel, D. Lopez-Val and E. Vryonidou, Higgs pair production via gluon fusion in the Two-Higgs-Doublet Model, JHEP 09 (2014) 124 [arXiv:1407.0281] [INSPIRE].

    ADS  MATH  Google Scholar 

  16. [16]

    J. Cao, D. Li, L. Shang, P. Wu and Y. Zhang, Exploring the Higgs Sector of a Most Natural NMSSM and its Prediction on Higgs Pair Production at the LHC, JHEP 12 (2014) 026 [arXiv:1409.8431] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].

  18. [18]

    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Alignment limit of the NMSSM Higgs sector, Phys. Rev. D 93 (2016) 035013 [arXiv:1510.09137] [INSPIRE].

  19. [19]

    R. Grober, M. Muhlleitner, M. Spira and J. Streicher, NLO QCD Corrections to Higgs Pair Production including Dimension-6 Operators, JHEP 09 (2015) 092 [arXiv:1504.06577] [INSPIRE].

    ADS  MATH  Google Scholar 

  20. [20]

    L. Wu, J.M. Yang, C.-P. Yuan and M. Zhang, Higgs self-coupling in the MSSM and NMSSM after the LHC Run 1, Phys. Lett. B 747 (2015) 378 [arXiv:1504.06932] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    H.-J. He, J. Ren and W. Yao, Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders, Phys. Rev. D 93 (2016) 015003 [arXiv:1506.03302] [INSPIRE].

  22. [22]

    A. Carvalho, M. Dall’Osso, T. Dorigo, F. Goertz, C.A. Gottardo and M. Tosi, Higgs Pair Production: Choosing Benchmarks With Cluster Analysis, JHEP 04 (2016) 126 [arXiv:1507.02245] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    W.-J. Zhang, W.-G. Ma, R.-Y. Zhang, X.-Z. Li, L. Guo and C. Chen, Double Higgs boson production and decay in Randall-Sundrum model at hadron colliders, Phys. Rev. D 92 (2015) 116005 [arXiv:1512.01766] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    P. Huang, A. Joglekar, B. Li and C.E.M. Wagner, Probing the Electroweak Phase Transition at the LHC, Phys. Rev. D 93 (2016) 055049 [arXiv:1512.00068] [INSPIRE].

  25. [25]

    K. Nakamura, K. Nishiwaki, K.-y. Oda, S.C. Park and Y. Yamamoto, Di-Higgs enhancement by neutral scalar as probe of new colored sector, Eur. Phys. J. C 77 (2017) 273 [arXiv:1701.06137] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be?, Eur. Phys. J. C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].

  27. [27]

    P. Huang, A. Joglekar, M. Li and C.E.M. Wagner, Corrections to di-Higgs boson production with light stops and modified Higgs couplings, Phys. Rev. D 97 (2018) 075001 [arXiv:1711.05743] [INSPIRE].

  28. [28]

    G. Buchalla, M. Capozi, A. Celis, G. Heinrich and L. Scyboz, Higgs boson pair production in non-linear Effective Field Theory with full mt-dependence at NLO QCD, JHEP 09 (2018) 057 [arXiv:1806.05162] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    S. Borowka, C. Duhr, F. Maltoni, D. Pagani, A. Shivaji and X. Zhao, Probing the scalar potential via double Higgs boson production at hadron colliders, JHEP 04 (2019) 016 [arXiv:1811.12366] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    S. Chang and M.A. Luty, The Higgs Trilinear Coupling and the Scale of New Physics, JHEP 03 (2020) 140 [arXiv:1902.05556] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. [31]

    M. Blanke, S. Kast, J.M. Thompson, S. Westhoff and J. Zurita, Spotting hidden sectors with Higgs binoculars, JHEP 04 (2019) 160 [arXiv:1901.07558] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    H.-L. Li, M. Ramsey-Musolf and S. Willocq, Probing a scalar singlet-catalyzed electroweak phase transition with resonant di-Higgs boson production in the 4b channel, Phys. Rev. D 100 (2019) 075035 [arXiv:1906.05289] [INSPIRE].

  33. [33]

    M. Capozi and G. Heinrich, Exploring anomalous couplings in Higgs boson pair production through shape analysis, JHEP 03 (2020) 091 [arXiv:1908.08923] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    A. Alves, D. Gonçalves, T. Ghosh, H.-K. Guo and K. Sinha, Di-Higgs Production in the 4b Channel and Gravitational Wave Complementarity, JHEP 03 (2020) 053 [arXiv:1909.05268] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    J. Kozaczuk, M.J. Ramsey-Musolf and J. Shelton, Exotic Higgs boson decays and the electroweak phase transition, Phys. Rev. D 101 (2020) 115035 [arXiv:1911.10210] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    D. Barducci, K. Mimasu, J.M. No, C. Vernieri and J. Zurita, Enlarging the scope of resonant di-Higgs searches: Hunting for Higgs-to-Higgs cascades in 4b final states at the LHC and future colliders, JHEP 02 (2020) 002 [arXiv:1910.08574] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    P. Huang and Y.H. Ng, Di-Higgs Production in SUSY models at the LHC, Eur. Phys. J. Plus 135 (2020) 660 [arXiv:1910.13968] [INSPIRE].

    Google Scholar 

  38. [38]

    K. Cheung, A. Jueid, C.-T. Lu, J. Song and Y.W. Yoon, Disentangling new physics effects on non-resonant Higgs boson pair production from gluon fusion, arXiv:2003.11043 [INSPIRE].

  39. [39]

    ATLAS collaboration, Searches for Higgs boson pair production in the hhbbττ, γγWW*, γγbb, bbbb channels with the ATLAS detector, Phys. Rev. D 92 (2015) 092004 [arXiv:1509.04670] [INSPIRE].

  40. [40]

    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 94 (2016) 052002 [arXiv:1606.04782] [INSPIRE].

  41. [41]

    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 01 (2019) 030 [arXiv:1804.06174] [INSPIRE].

  42. [42]

    ATLAS collaboration, Search for the HH\( b\overline{b}b\overline{b} \) process via vector-boson fusion production using proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 07 (2020) 108 [arXiv:2001.05178] [INSPIRE].

  43. [43]

    CMS collaboration, Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 781 (2018) 244 [arXiv:1710.04960] [INSPIRE].

  44. [44]

    CMS collaboration, Search for production of Higgs boson pairs in the four b quark final state using large-area jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 01 (2019) 040 [arXiv:1808.01473] [INSPIRE].

  45. [45]

    CMS collaboration, Search for nonresonant Higgs boson pair production in the \( \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}} \) final state at \( \sqrt{s} \) = 13 TeV, JHEP 04 (2019) 112 [arXiv:1810.11854] [INSPIRE].

  46. [46]

    J.K. Behr, D. Bortoletto, J.A. Frost, N.P. Hartland, C. Issever and J. Rojo, Boosting Higgs pair production in the \( b\overline{b}b\overline{b} \) final state with multivariate techniques, Eur. Phys. J. C 76 (2016) 386 [arXiv:1512.08928] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    D. Wardrope, E. Jansen, N. Konstantinidis, B. Cooper, R. Falla and N. Norjoharuddeen, Non-resonant Higgs-pair production in the \( b\overline{b}\;b\overline{b} \) final state at the LHC, Eur. Phys. J. C 75 (2015) 219 [arXiv:1410.2794] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].

    Google Scholar 

  49. [49]

    ATLAS collaboration, Search for resonant and non-resonant Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) decay channel in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 191801 [Erratum ibid. 122 (2019) 089901] [arXiv:1808.00336] [INSPIRE].

  50. [50]

    CMS collaboration, Search for Higgs boson pair production in the bbττ final state in proton-proton collisions at \( \sqrt{\Big(}s\Big) \) = 8 TeV, Phys. Rev. D 96 (2017) 072004 [arXiv:1707.00350] [INSPIRE].

  51. [51]

    ATLAS collaboration, Search for Higgs boson pair production in the γγWW* channel using pp collision data recorded at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 1007 [arXiv:1807.08567] [INSPIRE].

  52. [52]

    ATLAS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state with 13 TeV pp collision data collected by the ATLAS experiment, JHEP 11 (2018) 040 [arXiv:1807.04873] [INSPIRE].

  53. [53]

    CMS collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV, Phys. Rev. D 94 (2016) 052012 [arXiv:1603.06896] [INSPIRE].

  54. [54]

    ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 800 (2020) 135103 [arXiv:1906.02025] [INSPIRE].

  55. [55]

    CMS collaboration, Combination of searches for Higgs boson pair production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 122 (2019) 121803 [arXiv:1811.09689] [INSPIRE].

  56. [56]

    ATLAS collaboration, Constraints on the Higgs boson self-coupling from the combination of single-Higgs and double-Higgs production analyses performed with the ATLAS experiment, Tech. Rep. ATLAS-CONF-2019-049 (2019).

  57. [57]

    ATLAS collaboration, Measurement prospects of the pair production and self-coupling of the Higgs boson with the ATLAS experiment at the HL-LHC, Tech. Rep. ATL-PHYS-PUB-2018-053 (2018).

  58. [58]

    CMS collaboration, Prospects for HH measurements at the HL-LHC, Tech. Rep. CMS-PAS-FTR-18-019 (2018).

  59. [59]

    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    ATLAS collaboration, Flavor Tagging with Track Jets in Boosted Topologies with the ATLAS Detector, Tech. Rep. ATL-PHYS-PUB-2014-013 (2014).

  61. [61]

    R. Kogler et al., Jet Substructure at the Large Hadron Collider: Experimental Review, Rev. Mod. Phys. 91 (2019) 045003 [arXiv:1803.06991] [INSPIRE].

  62. [62]

    ATLAS collaboration, Identification of boosted Higgs bosons decaying into b-quark pairs with the ATLAS detector at 13 TeV, Eur. Phys. J. C 79 (2019) 836 [arXiv:1906.11005] [INSPIRE].

  63. [63]

    ATLAS collaboration, Observation of H\( b\overline{b} \) decays and VH production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].

  64. [64]

    CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].

  65. [65]

    CMS collaboration, Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair, Phys. Rev. Lett. 120 (2018) 071802 [arXiv:1709.05543] [INSPIRE].

  66. [66]

    ATLAS collaboration, Search for boosted resonances decaying to two b-quarks and produced in association with a jet at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2018-052 (2018).

  67. [67]

    ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].

  68. [68]

    ATLAS collaboration, Search for the standard model Higgs boson produced in association with top quarks and decaying into a \( b\overline{b} \) pair in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 072016 [arXiv:1712.08895] [INSPIRE].

  69. [69]

    CMS collaboration, Observation of \( \mathrm{t}\overline{\mathrm{t}}H \) production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].

  70. [70]

    CMS collaboration, Search for \( \mathrm{t}\overline{\mathrm{t}}\mathrm{H} \) production in the H → \( \mathrm{b}\overline{\mathrm{b}} \) decay channel with leptonic \( \mathrm{t}\overline{\mathrm{t}} \) decays in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2019) 026 [arXiv:1804.03682] [INSPIRE].

    Google Scholar 

  71. [71]

    ATLAS collaboration, Expected performance of the ATLAS b-tagging algorithms in Run-2, Tech. Rep. ATL-PHYS-PUB-2015-022 (2015).

  72. [72]

    CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST 13 P05011 [arXiv:1712.07158] [INSPIRE].

  73. [73]

    ATLAS collaboration, Measurements of b-jet tagging efficiency with the ATLAS detector using \( t\overline{t} \) events at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2018) 089 [arXiv:1805.01845] [INSPIRE].

  74. [74]

    R. Lippmann, An introduction to computing with neural nets, IEEE ASSP Mag. 4 (1987) 4.

    Google Scholar 

  75. [75]

    K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359.

    MATH  Google Scholar 

  76. [76]

    K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4 (1991) 251.

    Google Scholar 

  77. [77]

    P. Baldi, P. Sadowski and D. Whiteson, Searching for Exotic Particles in High-Energy Physics with Deep Learning, Nature Commun. 5 (2014) 4308 [arXiv:1402.4735] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    P. Baldi, P. Sadowski and D. Whiteson, Enhanced Higgs Boson to τ+τ Search with Deep Learning, Phys. Rev. Lett. 114 (2015) 111801 [arXiv:1410.3469] [INSPIRE].

    ADS  Google Scholar 

  79. [79]

    L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].

  80. [80]

    P. Baldi, K. Cranmer, T. Faucett, P. Sadowski and D. Whiteson, Parameterized neural networks for high-energy physics, Eur. Phys. J. C 76 (2016) 235 [arXiv:1601.07913] [INSPIRE].

    ADS  Google Scholar 

  81. [81]

    S. Caron, J.S. Kim, K. Rolbiecki, R. Ruiz de Austri and B. Stienen, The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning, Eur. Phys. J. C 77 (2017) 257 [arXiv:1605.02797] [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    S. Chang, T. Cohen and B. Ostdiek, What is the Machine Learning?, Phys. Rev. D 97 (2018) 056009 [arXiv:1709.10106] [INSPIRE].

  83. [83]

    J. Lin, M. Freytsis, I. Moult and B. Nachman, Boosting H\( b\overline{b} \) with Machine Learning, JHEP 10 (2018) 101 [arXiv:1807.10768] [INSPIRE].

    ADS  Google Scholar 

  84. [84]

    K. Albertsson et al., Machine Learning in High Energy Physics Community White Paper, J. Phys. Conf. Ser. 1085 (2018) 022008 [arXiv:1807.02876] [INSPIRE].

  85. [85]

    D. Guest, K. Cranmer and D. Whiteson, Deep Learning and its Application to LHC Physics, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161 [arXiv:1806.11484] [INSPIRE].

    ADS  Google Scholar 

  86. [86]

    M. Abdughani, J. Ren, L. Wu, J.M. Yang and J. Zhao, Supervised deep learning in high energy phenomenology: a mini review, Commun. Theor. Phys. 71 (2019) 955 [arXiv:1905.06047] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  87. [87]

    P. Windischhofer, M. Zgubič and D. Bortoletto, Preserving physically important variables in optimal event selections: A case study in Higgs physics, JHEP 07 (2020) 001 [arXiv:1907.02098] [INSPIRE].

    ADS  Google Scholar 

  88. [88]

    S.M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, in Advances in Neural Information Processing Systems 30, I. Guyon et al. eds., pp. 4765–4774, Curran Associates, Inc. (2017) [arXiv:1705.07874].

  89. [89]

    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].

    ADS  Google Scholar 

  90. [90]

    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].

  91. [91]

    A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed — selecting hh events at the high luminosity LHC, Phys. Lett. B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE].

    ADS  Google Scholar 

  92. [92]

    C.-R. Chen and I. Low, Double take on new physics in double Higgs boson production, Phys. Rev. D 90 (2014) 013018 [arXiv:1405.7040] [INSPIRE].

  93. [93]

    S. Dawson, A. Ismail and I. Low, What’s in the loop? The anatomy of double Higgs production, Phys. Rev. D 91 (2015) 115008 [arXiv:1504.05596] [INSPIRE].

    ADS  Google Scholar 

  94. [94]

    C.-T. Lu, J. Chang, K. Cheung and J.S. Lee, An exploratory study of Higgs-boson pair production, JHEP 08 (2015) 133 [arXiv:1505.00957] [INSPIRE].

    ADS  Google Scholar 

  95. [95]

    F. Kling, T. Plehn and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev. D 95 (2017) 035026 [arXiv:1607.07441] [INSPIRE].

  96. [96]

    W. Bizon, M. Gorbahn, U. Haisch and G. Zanderighi, Constraints on the trilinear Higgs coupling from vector boson fusion and associated Higgs production at the LHC, JHEP 07 (2017) 083 [arXiv:1610.05771] [INSPIRE].

    ADS  Google Scholar 

  97. [97]

    F. Bishara, R. Contino and J. Rojo, Higgs pair production in vector-boson fusion at the LHC and beyond, Eur. Phys. J. C 77 (2017) 481 [arXiv:1611.03860] [INSPIRE].

    ADS  Google Scholar 

  98. [98]

    A. Adhikary, S. Banerjee, R.K. Barman, B. Bhattacherjee and S. Niyogi, Revisiting the non-resonant Higgs pair production at the HL-LHC, JHEP 07 (2018) 116 [arXiv:1712.05346] [INSPIRE].

    ADS  Google Scholar 

  99. [99]

    A. Alves, T. Ghosh and K. Sinha, Can We Discover Double Higgs Production at the LHC?, Phys. Rev. D 96 (2017) 035022 [arXiv:1704.07395] [INSPIRE].

  100. [100]

    T. Huang et al., Resonant di-Higgs boson production in the \( b\overline{b} WW \) channel: Probing the electroweak phase transition at the LHC, Phys. Rev. D 96 (2017) 035007 [arXiv:1701.04442] [INSPIRE].

  101. [101]

    J.H. Kim, Y. Sakaki and M. Son, Combined analysis of double Higgs production via gluon fusion at the HL-LHC in the effective field theory approach, Phys. Rev. D 98 (2018) 015016 [arXiv:1801.06093] [INSPIRE].

  102. [102]

    J. Chang, K. Cheung, J.S. Lee, C.-T. Lu and J. Park, Higgs-boson-pair production H (→ \( b\overline{b} \))H(→ γγ) from gluon fusion at the HL-LHC and HL-100 TeV hadron collider, Phys. Rev. D 100 (2019) 096001 [arXiv:1804.07130] [INSPIRE].

  103. [103]

    J.H. Kim, K. Kong, K.T. Matchev and M. Park, Probing the Triple Higgs Self-Interaction at the Large Hadron Collider, Phys. Rev. Lett. 122 (2019) 091801 [arXiv:1807.11498] [INSPIRE].

  104. [104]

    P. Basler, S. Dawson, C. Englert and M. Mühlleitner, Showcasing HH production: Benchmarks for the LHC and HL-LHC, Phys. Rev. D 99 (2019) 055048 [arXiv:1812.03542] [INSPIRE].

  105. [105]

    J. Chang, K. Cheung, J.S. Lee and J. Park, Probing the trilinear Higgs boson self-coupling at the high-luminosity LHC via multivariate analysis, Phys. Rev. D 101 (2020) 016004 [arXiv:1908.00753] [INSPIRE].

  106. [106]

    E. Arganda, C. Garcia-Garcia and M.J. Herrero, Probing the Higgs self-coupling through double Higgs production in vector boson scattering at the LHC, Nucl. Phys. B 945 (2019) 114687 [arXiv:1807.09736] [INSPIRE].

    MATH  Google Scholar 

  107. [107]

    Q.-H. Cao, Y. Liu and B. Yan, Measuring trilinear Higgs coupling in WHH and ZHH productions at the high-luminosity LHC, Phys. Rev. D 95 (2017) 073006 [arXiv:1511.03311] [INSPIRE].

  108. [108]

    C.-Y. Chen, Q.-S. Yan, X. Zhao, Y.-M. Zhong and Z. Zhao, Probing triple-Higgs productions via 4b2γ decay channel at a 100 TeV hadron collider, Phys. Rev. D 93 (2016) 013007 [arXiv:1510.04013] [INSPIRE].

  109. [109]

    T. Liu, K.-F. Lyu, J. Ren and H.X. Zhu, Probing the quartic Higgs boson self-interaction, Phys. Rev. D 98 (2018) 093004 [arXiv:1803.04359] [INSPIRE].

  110. [110]

    W. Bizoń, U. Haisch and L. Rottoli, Constraints on the quartic Higgs self-coupling from double-Higgs production at future hadron colliders, JHEP 10 (2019) 267 [arXiv:1810.04665] [INSPIRE].

    ADS  Google Scholar 

  111. [111]

    A. Papaefstathiou, G. Tetlalmatzi-Xolocotzi and M. Zaro, Triple Higgs boson production to six b-jets at a 100 TeV proton collider, Eur. Phys. J. C 79 (2019) 947 [arXiv:1909.09166] [INSPIRE].

    ADS  Google Scholar 

  112. [112]

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  MATH  Google Scholar 

  113. [113]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

  114. [114]

    B. Hespel and E. Vryonidou, Higgs pair production heavy scalar model, https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/HiggsPairProduction#BSM:Additionalheavyscalarresonance.

  115. [115]

    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].

  116. [116]

    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  MATH  Google Scholar 

  117. [117]

    I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys. Rept. 793 (2019) 1 [arXiv:1706.08945] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  118. [118]

    J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].

    ADS  Google Scholar 

  119. [119]

    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  120. [120]

    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

  121. [121]

    L.-B. Chen, H.T. Li, H.-S. Shao and J. Wang, Higgs boson pair production via gluon fusion at N3LO in QCD, Phys. Lett. B 803 (2020) 135292 [arXiv:1909.06808] [INSPIRE].

    Google Scholar 

  122. [122]

    L.-B. Chen, H.T. Li, H.-S. Shao and J. Wang, The gluon-fusion production of Higgs boson pair: N3LO QCD corrections and top-quark mass effects, JHEP 03 (2020) 072 [arXiv:1912.13001] [INSPIRE].

    ADS  Google Scholar 

  123. [123]

    G. Heinrich, S.P. Jones, M. Kerner, G. Luisoni and L. Scyboz, Probing the trilinear Higgs boson coupling in di-Higgs production at NLO QCD including parton shower effects, JHEP 06 (2019) 066 [arXiv:1903.08137] [INSPIRE].

    ADS  Google Scholar 

  124. [124]

    D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].

  125. [125]

    D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP 09 (2015) 053 [arXiv:1505.07122] [INSPIRE].

  126. [126]

    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].

  127. [127]

    S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].

  128. [128]

    J. Davies et al., Double Higgs boson production at NLO: combining the exact numerical result and high-energy expansion, JHEP 11 (2019) 024 [arXiv:1907.06408] [INSPIRE].

  129. [129]

    J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira and J. Streicher, Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme, Eur. Phys. J. C 79 (2019) 459 [arXiv:1811.05692] [INSPIRE].

    ADS  Google Scholar 

  130. [130]

    J. Baglio et al., Higgs-Pair Production via Gluon Fusion at Hadron Colliders: NLO QCD Corrections, JHEP 04 (2020) 181 [arXiv:2003.03227] [INSPIRE].

  131. [131]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  132. [132]

    ATLAS collaboration, Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System, Tech. Rep. CERN-LHCC-2017-020, ATLAS-TDR-029 (2017).

  133. [133]

    ATLAS collaboration, Technical Proposal: A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade, Tech. Rep. CERN-LHCC-2018-023, LHCC-P-012 (2018).

  134. [134]

    CMS collaboration, A MIP Timing Detector for the CMS Phase-2 Upgrade, Tech. Rep. CERN-LHCC-2019-003, CMS-TDR-020 (2019).

  135. [135]

    J. Tseng and H. Evans, Sequential recombination algorithm for jet clustering and background subtraction, Phys. Rev. D 88 (2013) 014044 [arXiv:1304.1025] [INSPIRE].

  136. [136]

    D. Bertolini, P. Harris, M. Low and N. Tran, Pileup Per Particle Identification, JHEP 10 (2014) 059 [arXiv:1407.6013] [INSPIRE].

    ADS  Google Scholar 

  137. [137]

    M. Cacciari, G.P. Salam and G. Soyez, SoftKiller, a particle-level pileup removal method, Eur. Phys. J. C 75 (2015) 59 [arXiv:1407.0408] [INSPIRE].

    ADS  Google Scholar 

  138. [138]

    P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].

    ADS  Google Scholar 

  139. [139]

    P. Berta, L. Masetti, D.W. Miller and M. Spousta, Pileup and Underlying Event Mitigation with Iterative Constituent Subtraction, JHEP 08 (2019) 175 [arXiv:1905.03470] [INSPIRE].

    ADS  Google Scholar 

  140. [140]

    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  141. [141]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  MATH  Google Scholar 

  142. [142]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  MATH  Google Scholar 

  143. [143]

    ATLAS collaboration, Technical Design Report for the ATLAS Inner Tracker Pixel Detector, Tech. Rep. CERN-LHCC-2017-021, ATLAS-TDR-030 (2017).

  144. [144]

    D. Krohn, J. Thaler and L.-T. Wang, Jets with Variable R, JHEP 06 (2009) 059 [arXiv:0903.0392] [INSPIRE].

    ADS  Google Scholar 

  145. [145]

    CMS collaboration, A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution, Comput. Softw. Big Sci. 4 (2020) 10 [arXiv:1912.06046] [INSPIRE].

  146. [146]

    F. Chollet et al., Keras, https://keras.io (2015).

  147. [147]

    ATLAS collaboration, Search for non-resonant Higgs boson pair production in the bbℓνℓν final state with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 801 (2020) 135145 [arXiv:1908.06765] [INSPIRE].

  148. [148]

    X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, G. Gordon, D. Dunson and M. Dudík, eds., vol. 15 of Proceedings of Machine Learning Research, Fort Lauderdale, FL, U.S.A., pp. 315–323, PMLR, 11–13 April 2011.

  149. [149]

    D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [INSPIRE].

  150. [150]

    N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014) 1929.

    MathSciNet  MATH  Google Scholar 

  151. [151]

    B.T. Huffman, C. Jackson and J. Tseng, Tagging b quarks at extreme energies without tracks, J. Phys. G 43 (2016) 085001 [arXiv:1604.05036] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lydia Beresford.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2004.04240

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amacker, J., Balunas, W., Beresford, L. et al. Higgs self-coupling measurements using deep learning in the \( b\overline{b}b\overline{b} \) final state. J. High Energ. Phys. 2020, 115 (2020). https://doi.org/10.1007/JHEP12(2020)115

Download citation

Keywords

  • Higgs Physics
  • Beyond Standard Model