Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Revisiting the Melvin-Morton-Rozansky expansion, or there and back again
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

On Knots, Complements, and 6j-Symbols

05 March 2021

Hao Ellery Wang, Yuanzhe Jack Yang, … Satoshi Nawata

New structures for colored HOMFLY-PT invariants

29 June 2022

Shengmao Zhu

Eigenvalue conjecture and colored Alexander polynomials

05 April 2018

A. Mironov & A. Morozov

Colored HOMFLY-PT for hybrid weaving knot W ̂ 3 $$ {\hat{\mathrm{W}}}_3 $$ (m, n)

09 June 2021

Vivek Kumar Singh, Rama Mishra & P. Ramadevi

A diagrammatic approach to the AJ Conjecture

25 June 2020

Renaud Detcherry & Stavros Garoufalidis

Cyclotomic expansion of generalized Jones polynomials

19 March 2021

Yuri Berest, Joseph Gallagher & Peter Samuelson

Cyclotomic expansions of HOMFLY-PT colored by rectangular Young diagrams

31 July 2020

Masaya Kameyama, Satoshi Nawata, … Hao Derrick Zhang

Volume Conjecture and WKB Asymptotics

01 August 2022

A. I. Aptekarev, T. V. Dudnikova & D. N. Tulyakov

The KNTZ trick from arborescent calculus and the structure of the differential expansion

14 August 2020

A. Yu. Morozov

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 15 December 2020

Revisiting the Melvin-Morton-Rozansky expansion, or there and back again

  • Sibasish Banerjee1,
  • Jakub Jankowski  ORCID: orcid.org/0000-0003-0830-53462 &
  • Piotr Sułkowski2,3 

Journal of High Energy Physics volume 2020, Article number: 95 (2020) Cite this article

  • 209 Accesses

  • 2 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Alexander polynomial arises in the leading term of a semi-classical Melvin-Morton-Rozansky expansion of colored knot polynomials. In this work, following the opposite direction, we propose how to reconstruct colored HOMFLY-PT polynomials, superpolynomials, and newly introduced \( \hat{Z} \) invariants for some knot complements, from an appropriate rewriting, quantization and deformation of Alexander polynomial. Along this route we rederive conjectural expressions for the above mentioned invariants for various knots obtained recently, thereby proving their consistency with the Melvin-Morton-Rozansky theorem, and derive new formulae for colored superpolynomials unknown before. For a given knot, depending on certain choices, our reconstruction leads to equivalent expressions, which are either cyclotomic, or encode certain features of HOMFLY-PT homology and the knots-quivers correspondence.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Melvin and H. Morton, The coloured Jones function, Comm. Math. Phys. 169 (1995) 501.

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Rozansky, A Contribution to the trivial connection to Jones polynomial and Witten’s invariant of 3 − D manifolds. 1., Commun. Math. Phys. 175 (1996) 275 [hep-th/9401061] [INSPIRE].

  3. L. Rozansky, Higher order terms in the Melvin-Morton expansion of the colored Jones polynomial, Commun. Math. Phys. 183 (1997) 291.

  4. L. Rozansky, The universal R-matrix, Burau representation, and the Melvin-Morton expansion of the colored Jones polynomial, Adv. Math. 134 (1998) 1.

  5. D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103.

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Garoufalidis and T.T.Q. Le, An analytic version of the melvin-morton-rozansky conjecture, math/0503641.

  7. N.M. Dunfield, S. Gukov and J. Rasmussen, The Superpolynomial for knot homologies, math/0505662 [INSPIRE].

  8. S. Gukov and M. Stošić, Homological Algebra of Knots and BPS States, Proc. Symp. Pure Math. 85 (2012) 125 [arXiv:1112.0030] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  9. H. Awata, S. Gukov, P. Sulkowski and H. Fuji, Volume Conjecture: Refined and Categorified, Adv. Theor. Math. Phys. 16 (2012) 1669 [arXiv:1203.2182] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  10. H. Fuji, S. Gukov, M. Stosic and P. Sulkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for Twist Knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].

  12. S. Nawata and A. Oblomkov, Lectures on knot homology, Contemp. Math. 680 (2016) 137 [arXiv:1510.01795] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  13. S. Gukov, S. Nawata, I. Saberi, M. Stošić and P. Sułkowski, Sequencing BPS Spectra, JHEP 03 (2016) 004 [arXiv:1512.07883] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Gukov and C. Manolescu, A two-variable series for knot complements, arXiv:1904.06057 [INSPIRE].

  15. S. Park, Higher rank \( \hat{Z} \) and FK, SIGMA 16 (2020) 044 [arXiv:1909.13002] [INSPIRE].

    MATH  Google Scholar 

  16. T. Ekholm, A. Gruen, S. Gukov, P. Kucharski, S. Park and P. Sułkowski, \( \hat{Z} \) at large N: from curve counts to quantum modularity, arXiv:2005.13349 [INSPIRE].

  17. K. Habiro, A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres, Invent. Math. 171 (2007) 1.

  18. Y. Berest, J. Gallagher and P. Samuelson, Cyclotomic Expansion of Generalized Jones Polynomials, arXiv:1908.04415.

  19. P. Kucharski, M. Reineke, M. Stosic and P. Sułkowski, BPS states, knots and quivers, Phys. Rev. D 96 (2017) 121902 [arXiv:1707.02991] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. P. Kucharski, M. Reineke, M. Stosic and P. Sułkowski, Knots-quivers correspondence, Adv. Theor. Math. Phys. 23 (2019) 1849 [arXiv:1707.04017] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  21. H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. H. Fuji and P. Sulkowski, Super-A-polynomial, Proc. Symp. Pure Math. 90 (2015) 277 [arXiv:1303.3709] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  23. M. Aganagic and C. Vafa, Large N Duality, Mirror Symmetry, and a Q-deformed A-polynomial for Knots, arXiv:1204.4709 [INSPIRE].

  24. C. Manolescu, An introduction to knot Floer homology, arXiv:1401.7107 [INSPIRE].

  25. E. Gorsky, S. Gukov and M. Stosic, Quadruply-graded colored homology of knots, arXiv:1304.3481 [INSPIRE].

  26. M. Kontsevich and Y. Soibelman, Cohomological Hal l algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Num. Theor. Phys. 5 (2011) 231 [arXiv:1006.2706] [INSPIRE].

    Article  Google Scholar 

  27. M. Reineke, Degenerate Cohomological Hal l algebra and quantized Donaldson-Thomas invariants for m-loop quivers, arXiv:1102.3978.

  28. M. Panfil, M. Stošić and P. Sułkowski, Donaldson-Thomas invariants, torus knots, and lattice paths, Phys. Rev. D 98 (2018) 026022 [arXiv:1802.04573] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Stosic and P. Wedrich, Rational links and DT invariants of quivers, arXiv:1711.03333 [INSPIRE].

  30. M. Stosic and P. Wedrich, Tangle addition and the knots-quivers correspondence, arXiv:2004.10837 [INSPIRE].

  31. T. Ekholm, P. Kucharski and P. Longhi, Physics and geometry of knots-quivers correspondence, Commun. Math. Phys. 379 (2020) 361 [arXiv:1811.03110] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Ekholm, P. Kucharski and P. Longhi, Multi-cover skeins, quivers, and 3d \( \mathcal{N} \) = 2 dualities, JHEP 02 (2020) 018 [arXiv:1910.06193] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Panfil and P. Sułkowski, Topological strings, strips and quivers, JHEP 01 (2019) 124 [arXiv:1811.03556] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. Zodinmawia and P. Ramadevi, SU(N) quantum Racah coefficients \ & non-torus links, Nucl. Phys. B 870 (2013) 205 [arXiv:1107.3918] [INSPIRE].

  35. S. Nawata, P. Ramadevi and Zodinmawia, Colored HOMFLY polynomials from Chern-Simons theory, J. Knot Theor. 22 (2013) 1350078 [arXiv:1302.5144] [INSPIRE].

  36. P. Ramadevi and V. Singh, private communication (2020).

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, Universität zu Köln, Weyertal 86-90, D-50931, Cologne, Germany

    Sibasish Banerjee

  2. Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland

    Jakub Jankowski & Piotr Sułkowski

  3. Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, USA

    Piotr Sułkowski

Authors
  1. Sibasish Banerjee
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jakub Jankowski
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Piotr Sułkowski
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Sibasish Banerjee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.00579v2

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Jankowski, J. & Sułkowski, P. Revisiting the Melvin-Morton-Rozansky expansion, or there and back again. J. High Energ. Phys. 2020, 95 (2020). https://doi.org/10.1007/JHEP12(2020)095

Download citation

  • Received: 17 July 2020

  • Accepted: 29 October 2020

  • Published: 15 December 2020

  • DOI: https://doi.org/10.1007/JHEP12(2020)095

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chern-Simons Theories
  • Topological Field Theories
  • Topological Strings
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.