Abstract
Alexander polynomial arises in the leading term of a semi-classical Melvin-Morton-Rozansky expansion of colored knot polynomials. In this work, following the opposite direction, we propose how to reconstruct colored HOMFLY-PT polynomials, superpolynomials, and newly introduced \( \hat{Z} \) invariants for some knot complements, from an appropriate rewriting, quantization and deformation of Alexander polynomial. Along this route we rederive conjectural expressions for the above mentioned invariants for various knots obtained recently, thereby proving their consistency with the Melvin-Morton-Rozansky theorem, and derive new formulae for colored superpolynomials unknown before. For a given knot, depending on certain choices, our reconstruction leads to equivalent expressions, which are either cyclotomic, or encode certain features of HOMFLY-PT homology and the knots-quivers correspondence.
References
P. Melvin and H. Morton, The coloured Jones function, Comm. Math. Phys. 169 (1995) 501.
L. Rozansky, A Contribution to the trivial connection to Jones polynomial and Witten’s invariant of 3 − D manifolds. 1., Commun. Math. Phys. 175 (1996) 275 [hep-th/9401061] [INSPIRE].
L. Rozansky, Higher order terms in the Melvin-Morton expansion of the colored Jones polynomial, Commun. Math. Phys. 183 (1997) 291.
L. Rozansky, The universal R-matrix, Burau representation, and the Melvin-Morton expansion of the colored Jones polynomial, Adv. Math. 134 (1998) 1.
D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103.
S. Garoufalidis and T.T.Q. Le, An analytic version of the melvin-morton-rozansky conjecture, math/0503641.
N.M. Dunfield, S. Gukov and J. Rasmussen, The Superpolynomial for knot homologies, math/0505662 [INSPIRE].
S. Gukov and M. Stošić, Homological Algebra of Knots and BPS States, Proc. Symp. Pure Math. 85 (2012) 125 [arXiv:1112.0030] [INSPIRE].
H. Awata, S. Gukov, P. Sulkowski and H. Fuji, Volume Conjecture: Refined and Categorified, Adv. Theor. Math. Phys. 16 (2012) 1669 [arXiv:1203.2182] [INSPIRE].
H. Fuji, S. Gukov, M. Stosic and P. Sulkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].
S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for Twist Knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].
S. Nawata and A. Oblomkov, Lectures on knot homology, Contemp. Math. 680 (2016) 137 [arXiv:1510.01795] [INSPIRE].
S. Gukov, S. Nawata, I. Saberi, M. Stošić and P. Sułkowski, Sequencing BPS Spectra, JHEP 03 (2016) 004 [arXiv:1512.07883] [INSPIRE].
S. Gukov and C. Manolescu, A two-variable series for knot complements, arXiv:1904.06057 [INSPIRE].
S. Park, Higher rank \( \hat{Z} \) and FK, SIGMA 16 (2020) 044 [arXiv:1909.13002] [INSPIRE].
T. Ekholm, A. Gruen, S. Gukov, P. Kucharski, S. Park and P. Sułkowski, \( \hat{Z} \) at large N: from curve counts to quantum modularity, arXiv:2005.13349 [INSPIRE].
K. Habiro, A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres, Invent. Math. 171 (2007) 1.
Y. Berest, J. Gallagher and P. Samuelson, Cyclotomic Expansion of Generalized Jones Polynomials, arXiv:1908.04415.
P. Kucharski, M. Reineke, M. Stosic and P. Sułkowski, BPS states, knots and quivers, Phys. Rev. D 96 (2017) 121902 [arXiv:1707.02991] [INSPIRE].
P. Kucharski, M. Reineke, M. Stosic and P. Sułkowski, Knots-quivers correspondence, Adv. Theor. Math. Phys. 23 (2019) 1849 [arXiv:1707.04017] [INSPIRE].
H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].
H. Fuji and P. Sulkowski, Super-A-polynomial, Proc. Symp. Pure Math. 90 (2015) 277 [arXiv:1303.3709] [INSPIRE].
M. Aganagic and C. Vafa, Large N Duality, Mirror Symmetry, and a Q-deformed A-polynomial for Knots, arXiv:1204.4709 [INSPIRE].
C. Manolescu, An introduction to knot Floer homology, arXiv:1401.7107 [INSPIRE].
E. Gorsky, S. Gukov and M. Stosic, Quadruply-graded colored homology of knots, arXiv:1304.3481 [INSPIRE].
M. Kontsevich and Y. Soibelman, Cohomological Hal l algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Num. Theor. Phys. 5 (2011) 231 [arXiv:1006.2706] [INSPIRE].
M. Reineke, Degenerate Cohomological Hal l algebra and quantized Donaldson-Thomas invariants for m-loop quivers, arXiv:1102.3978.
M. Panfil, M. Stošić and P. Sułkowski, Donaldson-Thomas invariants, torus knots, and lattice paths, Phys. Rev. D 98 (2018) 026022 [arXiv:1802.04573] [INSPIRE].
M. Stosic and P. Wedrich, Rational links and DT invariants of quivers, arXiv:1711.03333 [INSPIRE].
M. Stosic and P. Wedrich, Tangle addition and the knots-quivers correspondence, arXiv:2004.10837 [INSPIRE].
T. Ekholm, P. Kucharski and P. Longhi, Physics and geometry of knots-quivers correspondence, Commun. Math. Phys. 379 (2020) 361 [arXiv:1811.03110] [INSPIRE].
T. Ekholm, P. Kucharski and P. Longhi, Multi-cover skeins, quivers, and 3d \( \mathcal{N} \) = 2 dualities, JHEP 02 (2020) 018 [arXiv:1910.06193] [INSPIRE].
M. Panfil and P. Sułkowski, Topological strings, strips and quivers, JHEP 01 (2019) 124 [arXiv:1811.03556] [INSPIRE].
Zodinmawia and P. Ramadevi, SU(N) quantum Racah coefficients \ & non-torus links, Nucl. Phys. B 870 (2013) 205 [arXiv:1107.3918] [INSPIRE].
S. Nawata, P. Ramadevi and Zodinmawia, Colored HOMFLY polynomials from Chern-Simons theory, J. Knot Theor. 22 (2013) 1350078 [arXiv:1302.5144] [INSPIRE].
P. Ramadevi and V. Singh, private communication (2020).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2007.00579v2
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Banerjee, S., Jankowski, J. & Sułkowski, P. Revisiting the Melvin-Morton-Rozansky expansion, or there and back again. J. High Energ. Phys. 2020, 95 (2020). https://doi.org/10.1007/JHEP12(2020)095
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2020)095
Keywords
- Chern-Simons Theories
- Topological Field Theories
- Topological Strings