Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Operator expansions, layer susceptibility and two-point functions in BCFT

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 December 2020
  • volume 2020, Article number: 51 (2020)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Operator expansions, layer susceptibility and two-point functions in BCFT
Download PDF
  • Parijat Dey1,
  • Tobias Hansen1 &
  • Mykola Shpot  ORCID: orcid.org/0000-0001-9098-97452 
  • 245 Accesses

  • 19 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

We show that in boundary CFTs, there exists a one-to-one correspondence between the boundary operator expansion of the two-point correlation function and a power series expansion of the layer susceptibility. This general property allows the direct identification of the boundary spectrum and expansion coefficients from the layer susceptibility and opens a new way for efficient calculations of two-point correlators in BCFTs. To show how it works we derive an explicit expression for the correlation function 〈ϕiϕi〉 of the O(N) model at the extraordinary transition in 4 − ϵ dimensional semi-infinite space to order O(ϵ). The bulk operator product expansion of the two-point function gives access to the spectrum of the bulk CFT. In our example, we obtain the averaged anomalous dimensions of scalar composite operators of the O(N) model to order O(ϵ2). These agree with the known results both in ϵ and large-N expansions.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. H.W. Diehl and S. Dietrich, Field-theoretical approach to static critical phenomena in semi-infinite systems, Z. Phys. B 42 (1981) 65 [INSPIRE].

    Article  ADS  Google Scholar 

  2. E. Brézin, J.C.L. Guillou and J. Zinn-Justin, Field theoretical approach to critical phenomena, in Phase Transitions and Critical Phenomena, C. Domb and M.S. Green eds., vol. 6, pp. 125–247, Academic Press, London (1976).

  3. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International series of monographs on physics, Clarendon Press, Oxford, 1st ed. (1989).

  4. H.W. Diehl, Field-theoretical approach to critical behaviour at surfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 10, pp. 75–267, Academic Press, London (1986).

  5. D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

  6. G.E. Andrews, R. Askey and R. Roy, Special functions, in Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge (1999).

  7. P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTd, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

  8. M.A. Shpot, Boundary conformal field theory at the extraordinary transition: The layer susceptibility to O(ε), arXiv:1912.03021 [INSPIRE].

  9. J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.L. Cardy, Conformal invariance, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 11, pp. 55–126, Academic Press, London (1987).

  11. E. Eisenriegler, M. Krech and S. Dietrich, Short-distance behavior of the energy density near surfaces of critical systems, Phys. Rev. B 53 (1996) 14377.

  12. T.C. Lubensky and M.H. Rubin, Critical phenomena in semi-infinite systems. I. ϵ expansion for positive extrapolation length, Phys. Rev. B 11 (1975) 4533.

    Article  ADS  Google Scholar 

  13. G. Gompper and H. Wagner, Conformal invariance in semi-infinite systems: Application to critical surface scattering, Z. Phys. B 59 (1985) 193.

    Article  ADS  Google Scholar 

  14. D.M. McAvity and H. Osborn, Energy-momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Bissi, T. Hansen and A. Söderberg, Analytic Bootstrap for Boundary CFT, JHEP 01 (2019) 010 [arXiv:1808.08155] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and Interface CFTs from the Conformal Bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Gliozzi, Truncatable bootstrap equations in algebraic form and critical surface exponents, JHEP 10 (2016) 037 [arXiv:1605.04175] [INSPIRE].

  18. H.W. Diehl and M. Shpot, Massive field theory approach to surface critical behavior in three-dimensional systems, Nucl. Phys. B 528 (1998) 595 [cond-mat/9804083] [INSPIRE].

  19. T.C. Lubensky and M.H. Rubin, Critical phenomena in semi-infinite systems. 2. Mean-field theory, Phys. Rev. B 12 (1975) 3885 [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Rudnick and D. Jasnow, Critical wall perturbations: Scaling and renormalization group, Phys. Rev. Lett. 49 (1982) 1595.

    Article  ADS  Google Scholar 

  21. E. Eisenriegler and M. Stapper, Critical behavior near a symmetry-breaking surface and the stress tensor, Phys. Rev. B 50 (1994) 10009.

  22. G. Gompper, Theorie der kritischen Röntgen- und Neutronenstreuung an Oberflächen, Ph.D. Thesis, München Univ. (1986).

  23. D.M. McAvity, Integral transforms for conformal field theories with a boundary, J. Phys. A 28 (1995) 6915 [hep-th/9507028] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [INSPIRE].

  25. I.M. Gel’fand, M.I. Graev and N.Ya. Vilenkin, Generalized Functions, Volume 5: Integral Geometry and Representation Theory, AMS Chelsea Publishing, New York (1966).

  26. D. Ludwig, The Radon transform on Euclidean space, Commun. Pure Appl. Math. 19 (1966) 49.

    Article  MathSciNet  Google Scholar 

  27. S.R. Deans, The Radon transform and some of its applications, Wiley, New York (1983).

    MATH  Google Scholar 

  28. S. Helgason, The Radon transform, Birkhäuser, Boston (1999).

    Book  Google Scholar 

  29. S. Bhowmick, K. Ray and S. Sen, Holography in de Sitter and anti-de Sitter Spaces and Gel’fand Graev Radon transform, Phys. Lett. B 798 (2019) 134977 [arXiv:1903.07336] [INSPIRE].

  30. H.M. Srivastava and H.L. Manocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester)/Wiley, John Wiley and Sons, New York, Chichester, Brisbane and Toronto (1984).

  31. A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series. More Special Functions, vol. 3, Gordon and Breach, New York (1990).

  32. K. Binder, Critical behaviour at surfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 8, pp. 1–144, Academic Press, London (1983).

  33. H.W. Diehl, Why boundary conditions do not generally determine the universality class for boundary critical behavior, Eur. Phys. J. B 93 (2020) 195 [arXiv:2006.15425] [INSPIRE].

  34. A.J. Bray and M.A. Moore, Critical behaviour of semi-infinite systems, J. Phys. A 10 (1977) 1927.

    Article  ADS  MathSciNet  Google Scholar 

  35. T.W. Burkhardt and H.W. Diehl, Ordinary, extraordinary, and normal surface transitions: extraordinary-normal equivalence and simple explanation of |T − Tc|2−α singularities, Phys. Rev. B 50 (1994) 3894.

    Article  ADS  Google Scholar 

  36. H.W. Diehl, Critical adsorption of fluids and the equivalence of extraordinary and normal surface transitions, Ber. Bunsenges. Phys. Chem. 98 (1994) 466.

    Article  Google Scholar 

  37. M.E. Fisher and P.-G. de Gennes, Phénomènes aux parois dans un mélange binaire critique, C. R. Acad. Sci. Paris Série B 287 (1978) 207.

    Google Scholar 

  38. D. Beysens and S. Leibler, Observation of an anomalous adsorption in a critical binary mixture, J. Phys. Lett. 43 (1982) L133.

    Article  Google Scholar 

  39. G. Flöter and S. Dietrich, Universal amplitudes and profiles for critical adsorption, Z. Phys. B 97 (1995) 213.

    Article  ADS  Google Scholar 

  40. B.M. Law, Wetting, adsorption and surface critical phenomena, Prog. Surf. Sci. 66 (2001) 159.

    Article  ADS  Google Scholar 

  41. K. Ohno and Y. Okabe, The 1/n expansion for the extraordinary transition of semi-infinite system, Prog. Theor. Phys. 72 (1984) 736.

    Article  ADS  Google Scholar 

  42. H.W. Diehl and M. Smock, Critical behavior at the extraordinary transition: Temperature singularity of surface magnetization and order-parameter profile to one-loop order, Phys. Rev. B 47 (1993) 5841.

    Article  ADS  Google Scholar 

  43. E. Eisenriegler, Universal amplitude ratios for the surface tension of polymer solutions, J. Chem. Phys. 81 (1984) 4666.

    Article  ADS  Google Scholar 

  44. D. Jasnow, Renormalization group theory of interfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz eds., vol. 10, pp. 270–363, Academic Press, London (1986).

  45. J. Rudnick and D. Jasnow, Order-parameter profile in semi-infinite systems at criticality, Phys. Rev. Lett. 48 (1982) 1059.

    Article  ADS  Google Scholar 

  46. D. Jasnow, Critical phenomena at interfaces, Rept. Prog. Phys. 47 (1984) 1059.

    Article  ADS  Google Scholar 

  47. J.L. Cardy, Universal critical point amplitudes in parallel plate geometries, Phys. Rev. Lett. 65 (1990) 1443 [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. L. Bianchi, M. Lemos and M. Meineri, Line Defects and Radiation in \( \mathcal{N} \) = 2 Conformal Theories, Phys. Rev. Lett. 121 (2018) 141601 [arXiv:1805.04111] [INSPIRE].

    Article  ADS  Google Scholar 

  50. T. Huber and D. Maître, HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].

  51. T. Huber and D. Maître, HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [INSPIRE].

  52. L. Lewin, Polylogarithms and Associated Functions, Elsevier, New York (1981).

    MATH  Google Scholar 

  53. L.C. Maximon, The dilogarithm function for complex argument, Proc. Roy. Soc. Lond. A 459 (2003) 2807.

    Article  ADS  MathSciNet  Google Scholar 

  54. S. Kehrein, F. Wegner and Y. Pismak, Conformal symmetry and the spectrum of anomalous dimensions in the N vector model in 4 − ε dimensions, Nucl. Phys. B 402 (1993) 669 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Rychkov and Z.M. Tan, The ϵ-expansion from conformal field theory, J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].

  56. H. Kleinert, J. Neu, V. Schulte-Frohlinde, K.G. Chetyrkin and S.A. Larin, Five loop renormalization group functions of O(n) symmetric ϕ4 theory and ϵ-expansions of critical exponents up to ϵ5, Phys. Lett. B 272 (1991) 39 [Erratum ibid. 319 (1993) 545] [hep-th/9503230] [INSPIRE].

  57. S.E. Derkachov and A.N. Manashov, On the stability problem in the O(N) nonlinear σ-model, Phys. Rev. Lett. 79 (1997) 1423 [hep-th/9705020] [INSPIRE].

    Article  ADS  Google Scholar 

  58. K. Lang and W. Rühl, Field algebra for critical O(N) vector nonlinear σ-models at 2 < d < 4, Z. Phys. C 50 (1991) 285 [INSPIRE].

  59. K. Lang and W. Rühl, The Critical O(N) σ-model at dimension 2 < d < 4 and order 1/N2: Operator product expansions and renormalization, Nucl. Phys. B 377 (1992) 371 [INSPIRE].

  60. K. Lang and W. Rühl, The Critical O(N) σ-model at dimensions 2 < d < 4: Fusion coefficients and anomalous dimensions, Nucl. Phys. B 400 (1993) 597 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. G. Gompper, Scaling functions for critical surface scattering, Z. Phys. B 56 (1984) 217.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden

    Parijat Dey & Tobias Hansen

  2. Institute for Condensed Matter Physics, Lviv, 79011, Ukraine

    Mykola Shpot

Authors
  1. Parijat Dey
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tobias Hansen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mykola Shpot
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tobias Hansen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.11253

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, P., Hansen, T. & Shpot, M. Operator expansions, layer susceptibility and two-point functions in BCFT. J. High Energ. Phys. 2020, 51 (2020). https://doi.org/10.1007/JHEP12(2020)051

Download citation

  • Received: 24 September 2020

  • Accepted: 29 October 2020

  • Published: 09 December 2020

  • DOI: https://doi.org/10.1007/JHEP12(2020)051

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Boundary Quantum Field Theory
  • Conformal Field Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature