Skip to main content

Operator expansions, layer susceptibility and two-point functions in BCFT

A preprint version of the article is available at arXiv.

Abstract

We show that in boundary CFTs, there exists a one-to-one correspondence between the boundary operator expansion of the two-point correlation function and a power series expansion of the layer susceptibility. This general property allows the direct identification of the boundary spectrum and expansion coefficients from the layer susceptibility and opens a new way for efficient calculations of two-point correlators in BCFTs. To show how it works we derive an explicit expression for the correlation function 〈ϕiϕi〉 of the O(N) model at the extraordinary transition in 4 − ϵ dimensional semi-infinite space to order O(ϵ). The bulk operator product expansion of the two-point function gives access to the spectrum of the bulk CFT. In our example, we obtain the averaged anomalous dimensions of scalar composite operators of the O(N) model to order O(ϵ2). These agree with the known results both in ϵ and large-N expansions.

References

  1. H.W. Diehl and S. Dietrich, Field-theoretical approach to static critical phenomena in semi-infinite systems, Z. Phys. B 42 (1981) 65 [INSPIRE].

    ADS  Article  Google Scholar 

  2. E. Brézin, J.C.L. Guillou and J. Zinn-Justin, Field theoretical approach to critical phenomena, in Phase Transitions and Critical Phenomena, C. Domb and M.S. Green eds., vol. 6, pp. 125–247, Academic Press, London (1976).

  3. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International series of monographs on physics, Clarendon Press, Oxford, 1st ed. (1989).

  4. H.W. Diehl, Field-theoretical approach to critical behaviour at surfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 10, pp. 75–267, Academic Press, London (1986).

  5. D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

  6. G.E. Andrews, R. Askey and R. Roy, Special functions, in Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge (1999).

  7. P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTd, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

  8. M.A. Shpot, Boundary conformal field theory at the extraordinary transition: The layer susceptibility to O(ε), arXiv:1912.03021 [INSPIRE].

  9. J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].

    ADS  Article  Google Scholar 

  10. J.L. Cardy, Conformal invariance, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 11, pp. 55–126, Academic Press, London (1987).

  11. E. Eisenriegler, M. Krech and S. Dietrich, Short-distance behavior of the energy density near surfaces of critical systems, Phys. Rev. B 53 (1996) 14377.

  12. T.C. Lubensky and M.H. Rubin, Critical phenomena in semi-infinite systems. I. ϵ expansion for positive extrapolation length, Phys. Rev. B 11 (1975) 4533.

    ADS  Article  Google Scholar 

  13. G. Gompper and H. Wagner, Conformal invariance in semi-infinite systems: Application to critical surface scattering, Z. Phys. B 59 (1985) 193.

    ADS  Article  Google Scholar 

  14. D.M. McAvity and H. Osborn, Energy-momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. A. Bissi, T. Hansen and A. Söderberg, Analytic Bootstrap for Boundary CFT, JHEP 01 (2019) 010 [arXiv:1808.08155] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and Interface CFTs from the Conformal Bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. F. Gliozzi, Truncatable bootstrap equations in algebraic form and critical surface exponents, JHEP 10 (2016) 037 [arXiv:1605.04175] [INSPIRE].

  18. H.W. Diehl and M. Shpot, Massive field theory approach to surface critical behavior in three-dimensional systems, Nucl. Phys. B 528 (1998) 595 [cond-mat/9804083] [INSPIRE].

  19. T.C. Lubensky and M.H. Rubin, Critical phenomena in semi-infinite systems. 2. Mean-field theory, Phys. Rev. B 12 (1975) 3885 [INSPIRE].

    ADS  Article  Google Scholar 

  20. J. Rudnick and D. Jasnow, Critical wall perturbations: Scaling and renormalization group, Phys. Rev. Lett. 49 (1982) 1595.

    ADS  Article  Google Scholar 

  21. E. Eisenriegler and M. Stapper, Critical behavior near a symmetry-breaking surface and the stress tensor, Phys. Rev. B 50 (1994) 10009.

  22. G. Gompper, Theorie der kritischen Röntgen- und Neutronenstreuung an Oberflächen, Ph.D. Thesis, München Univ. (1986).

  23. D.M. McAvity, Integral transforms for conformal field theories with a boundary, J. Phys. A 28 (1995) 6915 [hep-th/9507028] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [INSPIRE].

  25. I.M. Gel’fand, M.I. Graev and N.Ya. Vilenkin, Generalized Functions, Volume 5: Integral Geometry and Representation Theory, AMS Chelsea Publishing, New York (1966).

  26. D. Ludwig, The Radon transform on Euclidean space, Commun. Pure Appl. Math. 19 (1966) 49.

    MathSciNet  Article  Google Scholar 

  27. S.R. Deans, The Radon transform and some of its applications, Wiley, New York (1983).

    MATH  Google Scholar 

  28. S. Helgason, The Radon transform, Birkhäuser, Boston (1999).

    Book  Google Scholar 

  29. S. Bhowmick, K. Ray and S. Sen, Holography in de Sitter and anti-de Sitter Spaces and Gel’fand Graev Radon transform, Phys. Lett. B 798 (2019) 134977 [arXiv:1903.07336] [INSPIRE].

  30. H.M. Srivastava and H.L. Manocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester)/Wiley, John Wiley and Sons, New York, Chichester, Brisbane and Toronto (1984).

  31. A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series. More Special Functions, vol. 3, Gordon and Breach, New York (1990).

  32. K. Binder, Critical behaviour at surfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 8, pp. 1–144, Academic Press, London (1983).

  33. H.W. Diehl, Why boundary conditions do not generally determine the universality class for boundary critical behavior, Eur. Phys. J. B 93 (2020) 195 [arXiv:2006.15425] [INSPIRE].

  34. A.J. Bray and M.A. Moore, Critical behaviour of semi-infinite systems, J. Phys. A 10 (1977) 1927.

    ADS  MathSciNet  Article  Google Scholar 

  35. T.W. Burkhardt and H.W. Diehl, Ordinary, extraordinary, and normal surface transitions: extraordinary-normal equivalence and simple explanation of |T − Tc|2−α singularities, Phys. Rev. B 50 (1994) 3894.

    ADS  Article  Google Scholar 

  36. H.W. Diehl, Critical adsorption of fluids and the equivalence of extraordinary and normal surface transitions, Ber. Bunsenges. Phys. Chem. 98 (1994) 466.

    Article  Google Scholar 

  37. M.E. Fisher and P.-G. de Gennes, Phénomènes aux parois dans un mélange binaire critique, C. R. Acad. Sci. Paris Série B 287 (1978) 207.

    Google Scholar 

  38. D. Beysens and S. Leibler, Observation of an anomalous adsorption in a critical binary mixture, J. Phys. Lett. 43 (1982) L133.

    Article  Google Scholar 

  39. G. Flöter and S. Dietrich, Universal amplitudes and profiles for critical adsorption, Z. Phys. B 97 (1995) 213.

    ADS  Article  Google Scholar 

  40. B.M. Law, Wetting, adsorption and surface critical phenomena, Prog. Surf. Sci. 66 (2001) 159.

    ADS  Article  Google Scholar 

  41. K. Ohno and Y. Okabe, The 1/n expansion for the extraordinary transition of semi-infinite system, Prog. Theor. Phys. 72 (1984) 736.

    ADS  Article  Google Scholar 

  42. H.W. Diehl and M. Smock, Critical behavior at the extraordinary transition: Temperature singularity of surface magnetization and order-parameter profile to one-loop order, Phys. Rev. B 47 (1993) 5841.

    ADS  Article  Google Scholar 

  43. E. Eisenriegler, Universal amplitude ratios for the surface tension of polymer solutions, J. Chem. Phys. 81 (1984) 4666.

    ADS  Article  Google Scholar 

  44. D. Jasnow, Renormalization group theory of interfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz eds., vol. 10, pp. 270–363, Academic Press, London (1986).

  45. J. Rudnick and D. Jasnow, Order-parameter profile in semi-infinite systems at criticality, Phys. Rev. Lett. 48 (1982) 1059.

    ADS  Article  Google Scholar 

  46. D. Jasnow, Critical phenomena at interfaces, Rept. Prog. Phys. 47 (1984) 1059.

    ADS  Article  Google Scholar 

  47. J.L. Cardy, Universal critical point amplitudes in parallel plate geometries, Phys. Rev. Lett. 65 (1990) 1443 [INSPIRE].

    ADS  Article  Google Scholar 

  48. M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. L. Bianchi, M. Lemos and M. Meineri, Line Defects and Radiation in \( \mathcal{N} \) = 2 Conformal Theories, Phys. Rev. Lett. 121 (2018) 141601 [arXiv:1805.04111] [INSPIRE].

    ADS  Article  Google Scholar 

  50. T. Huber and D. Maître, HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].

  51. T. Huber and D. Maître, HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [INSPIRE].

  52. L. Lewin, Polylogarithms and Associated Functions, Elsevier, New York (1981).

    MATH  Google Scholar 

  53. L.C. Maximon, The dilogarithm function for complex argument, Proc. Roy. Soc. Lond. A 459 (2003) 2807.

    ADS  MathSciNet  Article  Google Scholar 

  54. S. Kehrein, F. Wegner and Y. Pismak, Conformal symmetry and the spectrum of anomalous dimensions in the N vector model in 4 − ε dimensions, Nucl. Phys. B 402 (1993) 669 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. S. Rychkov and Z.M. Tan, The ϵ-expansion from conformal field theory, J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].

  56. H. Kleinert, J. Neu, V. Schulte-Frohlinde, K.G. Chetyrkin and S.A. Larin, Five loop renormalization group functions of O(n) symmetric ϕ4 theory and ϵ-expansions of critical exponents up to ϵ5, Phys. Lett. B 272 (1991) 39 [Erratum ibid. 319 (1993) 545] [hep-th/9503230] [INSPIRE].

  57. S.E. Derkachov and A.N. Manashov, On the stability problem in the O(N) nonlinear σ-model, Phys. Rev. Lett. 79 (1997) 1423 [hep-th/9705020] [INSPIRE].

    ADS  Article  Google Scholar 

  58. K. Lang and W. Rühl, Field algebra for critical O(N) vector nonlinear σ-models at 2 < d < 4, Z. Phys. C 50 (1991) 285 [INSPIRE].

  59. K. Lang and W. Rühl, The Critical O(N) σ-model at dimension 2 < d < 4 and order 1/N2: Operator product expansions and renormalization, Nucl. Phys. B 377 (1992) 371 [INSPIRE].

  60. K. Lang and W. Rühl, The Critical O(N) σ-model at dimensions 2 < d < 4: Fusion coefficients and anomalous dimensions, Nucl. Phys. B 400 (1993) 597 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. G. Gompper, Scaling functions for critical surface scattering, Z. Phys. B 56 (1984) 217.

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Hansen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.11253

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dey, P., Hansen, T. & Shpot, M. Operator expansions, layer susceptibility and two-point functions in BCFT. J. High Energ. Phys. 2020, 51 (2020). https://doi.org/10.1007/JHEP12(2020)051

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2020)051

Keywords

  • Boundary Quantum Field Theory
  • Conformal Field Theory