H.W. Diehl and S. Dietrich, Field-theoretical approach to static critical phenomena in semi-infinite systems, Z. Phys. B 42 (1981) 65 [INSPIRE].
ADS
Article
Google Scholar
E. Brézin, J.C.L. Guillou and J. Zinn-Justin, Field theoretical approach to critical phenomena, in Phase Transitions and Critical Phenomena, C. Domb and M.S. Green eds., vol. 6, pp. 125–247, Academic Press, London (1976).
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International series of monographs on physics, Clarendon Press, Oxford, 1st ed. (1989).
H.W. Diehl, Field-theoretical approach to critical behaviour at surfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 10, pp. 75–267, Academic Press, London (1986).
D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].
G.E. Andrews, R. Askey and R. Roy, Special functions, in Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge (1999).
P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTd, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].
M.A. Shpot, Boundary conformal field theory at the extraordinary transition: The layer susceptibility to O(ε), arXiv:1912.03021 [INSPIRE].
J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].
ADS
Article
Google Scholar
J.L. Cardy, Conformal invariance, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 11, pp. 55–126, Academic Press, London (1987).
E. Eisenriegler, M. Krech and S. Dietrich, Short-distance behavior of the energy density near surfaces of critical systems, Phys. Rev. B 53 (1996) 14377.
T.C. Lubensky and M.H. Rubin, Critical phenomena in semi-infinite systems. I. ϵ expansion for positive extrapolation length, Phys. Rev. B 11 (1975) 4533.
ADS
Article
Google Scholar
G. Gompper and H. Wagner, Conformal invariance in semi-infinite systems: Application to critical surface scattering, Z. Phys. B 59 (1985) 193.
ADS
Article
Google Scholar
D.M. McAvity and H. Osborn, Energy-momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Bissi, T. Hansen and A. Söderberg, Analytic Bootstrap for Boundary CFT, JHEP 01 (2019) 010 [arXiv:1808.08155] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and Interface CFTs from the Conformal Bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Gliozzi, Truncatable bootstrap equations in algebraic form and critical surface exponents, JHEP 10 (2016) 037 [arXiv:1605.04175] [INSPIRE].
H.W. Diehl and M. Shpot, Massive field theory approach to surface critical behavior in three-dimensional systems, Nucl. Phys. B 528 (1998) 595 [cond-mat/9804083] [INSPIRE].
T.C. Lubensky and M.H. Rubin, Critical phenomena in semi-infinite systems. 2. Mean-field theory, Phys. Rev. B 12 (1975) 3885 [INSPIRE].
ADS
Article
Google Scholar
J. Rudnick and D. Jasnow, Critical wall perturbations: Scaling and renormalization group, Phys. Rev. Lett. 49 (1982) 1595.
ADS
Article
Google Scholar
E. Eisenriegler and M. Stapper, Critical behavior near a symmetry-breaking surface and the stress tensor, Phys. Rev. B 50 (1994) 10009.
G. Gompper, Theorie der kritischen Röntgen- und Neutronenstreuung an Oberflächen, Ph.D. Thesis, München Univ. (1986).
D.M. McAvity, Integral transforms for conformal field theories with a boundary, J. Phys. A 28 (1995) 6915 [hep-th/9507028] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [INSPIRE].
I.M. Gel’fand, M.I. Graev and N.Ya. Vilenkin, Generalized Functions, Volume 5: Integral Geometry and Representation Theory, AMS Chelsea Publishing, New York (1966).
D. Ludwig, The Radon transform on Euclidean space, Commun. Pure Appl. Math. 19 (1966) 49.
MathSciNet
Article
Google Scholar
S.R. Deans, The Radon transform and some of its applications, Wiley, New York (1983).
MATH
Google Scholar
S. Helgason, The Radon transform, Birkhäuser, Boston (1999).
Book
Google Scholar
S. Bhowmick, K. Ray and S. Sen, Holography in de Sitter and anti-de Sitter Spaces and Gel’fand Graev Radon transform, Phys. Lett. B 798 (2019) 134977 [arXiv:1903.07336] [INSPIRE].
H.M. Srivastava and H.L. Manocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester)/Wiley, John Wiley and Sons, New York, Chichester, Brisbane and Toronto (1984).
A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series. More Special Functions, vol. 3, Gordon and Breach, New York (1990).
K. Binder, Critical behaviour at surfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, eds., vol. 8, pp. 1–144, Academic Press, London (1983).
H.W. Diehl, Why boundary conditions do not generally determine the universality class for boundary critical behavior, Eur. Phys. J. B 93 (2020) 195 [arXiv:2006.15425] [INSPIRE].
A.J. Bray and M.A. Moore, Critical behaviour of semi-infinite systems, J. Phys. A 10 (1977) 1927.
ADS
MathSciNet
Article
Google Scholar
T.W. Burkhardt and H.W. Diehl, Ordinary, extraordinary, and normal surface transitions: extraordinary-normal equivalence and simple explanation of |T − Tc|2−α singularities, Phys. Rev. B 50 (1994) 3894.
ADS
Article
Google Scholar
H.W. Diehl, Critical adsorption of fluids and the equivalence of extraordinary and normal surface transitions, Ber. Bunsenges. Phys. Chem. 98 (1994) 466.
Article
Google Scholar
M.E. Fisher and P.-G. de Gennes, Phénomènes aux parois dans un mélange binaire critique, C. R. Acad. Sci. Paris Série B 287 (1978) 207.
Google Scholar
D. Beysens and S. Leibler, Observation of an anomalous adsorption in a critical binary mixture, J. Phys. Lett. 43 (1982) L133.
Article
Google Scholar
G. Flöter and S. Dietrich, Universal amplitudes and profiles for critical adsorption, Z. Phys. B 97 (1995) 213.
ADS
Article
Google Scholar
B.M. Law, Wetting, adsorption and surface critical phenomena, Prog. Surf. Sci. 66 (2001) 159.
ADS
Article
Google Scholar
K. Ohno and Y. Okabe, The 1/n expansion for the extraordinary transition of semi-infinite system, Prog. Theor. Phys. 72 (1984) 736.
ADS
Article
Google Scholar
H.W. Diehl and M. Smock, Critical behavior at the extraordinary transition: Temperature singularity of surface magnetization and order-parameter profile to one-loop order, Phys. Rev. B 47 (1993) 5841.
ADS
Article
Google Scholar
E. Eisenriegler, Universal amplitude ratios for the surface tension of polymer solutions, J. Chem. Phys. 81 (1984) 4666.
ADS
Article
Google Scholar
D. Jasnow, Renormalization group theory of interfaces, in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz eds., vol. 10, pp. 270–363, Academic Press, London (1986).
J. Rudnick and D. Jasnow, Order-parameter profile in semi-infinite systems at criticality, Phys. Rev. Lett. 48 (1982) 1059.
ADS
Article
Google Scholar
D. Jasnow, Critical phenomena at interfaces, Rept. Prog. Phys. 47 (1984) 1059.
ADS
Article
Google Scholar
J.L. Cardy, Universal critical point amplitudes in parallel plate geometries, Phys. Rev. Lett. 65 (1990) 1443 [INSPIRE].
ADS
Article
Google Scholar
M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
L. Bianchi, M. Lemos and M. Meineri, Line Defects and Radiation in \( \mathcal{N} \) = 2 Conformal Theories, Phys. Rev. Lett. 121 (2018) 141601 [arXiv:1805.04111] [INSPIRE].
ADS
Article
Google Scholar
T. Huber and D. Maître, HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].
T. Huber and D. Maître, HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [INSPIRE].
L. Lewin, Polylogarithms and Associated Functions, Elsevier, New York (1981).
MATH
Google Scholar
L.C. Maximon, The dilogarithm function for complex argument, Proc. Roy. Soc. Lond. A 459 (2003) 2807.
ADS
MathSciNet
Article
Google Scholar
S. Kehrein, F. Wegner and Y. Pismak, Conformal symmetry and the spectrum of anomalous dimensions in the N vector model in 4 − ε dimensions, Nucl. Phys. B 402 (1993) 669 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Rychkov and Z.M. Tan, The ϵ-expansion from conformal field theory, J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].
H. Kleinert, J. Neu, V. Schulte-Frohlinde, K.G. Chetyrkin and S.A. Larin, Five loop renormalization group functions of O(n) symmetric ϕ4 theory and ϵ-expansions of critical exponents up to ϵ5, Phys. Lett. B 272 (1991) 39 [Erratum ibid. 319 (1993) 545] [hep-th/9503230] [INSPIRE].
S.E. Derkachov and A.N. Manashov, On the stability problem in the O(N) nonlinear σ-model, Phys. Rev. Lett. 79 (1997) 1423 [hep-th/9705020] [INSPIRE].
ADS
Article
Google Scholar
K. Lang and W. Rühl, Field algebra for critical O(N) vector nonlinear σ-models at 2 < d < 4, Z. Phys. C 50 (1991) 285 [INSPIRE].
K. Lang and W. Rühl, The Critical O(N) σ-model at dimension 2 < d < 4 and order 1/N2: Operator product expansions and renormalization, Nucl. Phys. B 377 (1992) 371 [INSPIRE].
K. Lang and W. Rühl, The Critical O(N) σ-model at dimensions 2 < d < 4: Fusion coefficients and anomalous dimensions, Nucl. Phys. B 400 (1993) 597 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Gompper, Scaling functions for critical surface scattering, Z. Phys. B 56 (1984) 217.
ADS
Article
Google Scholar