V.A. Fateev, E. Onofri and A.B. Zamolodchikov, Integrable deformations of O(3) sigma model. The sausage model, Nucl. Phys.B 406 (1993) 521 [INSPIRE].
V.A. Fateev, The sigma model (dual) representation for a two-parameter family of integrable quantum field theories, Nucl. Phys.B 473 (1996) 509 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
S.L. Lukyanov, The integrable harmonic map problem versus Ricci flow, Nucl. Phys.B 865 (2012) 308 [arXiv:1205.3201] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
V. Fateev, Classical and quantum integrable sigma models. Ricci flow, “nice duality” and perturbed rational conformal field theories, arXiv:1902.02811 [INSPIRE].
V.A. Fateev and A.V. Litvinov, Integrability, Duality and Sigma Models, JHEP11 (2018) 204 [arXiv:1804.03399] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A.V. Litvinov and L.A. Spodyneiko, On dual description of the deformed O(N ) sigma model, JHEP11 (2018) 139 [arXiv:1804.07084] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
B. Hoare, N. Levine and A.A. Tseytlin, Integrable 2d sigma models: quantum corrections to geometry from RG flow, Nucl. Phys.B 949 (2019) 114798 [arXiv:1907.04737] [INSPIRE].
MathSciNet
Article
Google Scholar
K. Sfetsos, Integrable interpolations: From exact CFTs to non-abelian T-duals, Nucl. Phys.B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, Integrable Deformations of Strings on Symmetric Spaces, JHEP11 (2014) 009 [arXiv:1407.2840] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
K. Sfetsos and A.A. Tseytlin, Chiral gauged WZNW models and heterotic string backgrounds, Nucl. Phys.B 415 (1994) 116 [hep-th/9308018] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
K. Sfetsos and A.A. Tseytlin, Antisymmetric tensor coupling and conformal invariance in sigma models corresponding to gauged WZNW theories, Phys. Rev.D 49 (1994) 2933 [hep-th/9310159] [INSPIRE].
ADS
Google Scholar
A.A. Tseytlin, On a ‘universal’ class of WZW type conformal models, Nucl. Phys.B 418 (1994) 173 [hep-th/9311062] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
S.-w. Chung and S.H.H. Tye, Chiral gauged WZW theories and coset models in conformal field theory, Phys. Rev.D 47 (1993) 4546 [hep-th/9202002] [INSPIRE].
ADS
Google Scholar
G. Itsios, K. Sfetsos and K. Siampos, The all-loop non-abelian Thirring model and its RG flow, Phys. Lett.B 733 (2014) 265 [arXiv:1404.3748] [INSPIRE].
ADS
MATH
Article
Google Scholar
B. Hoare and A.A. Tseytlin, On integrable deformations of superstring sigma models related to AdSn× Snsupercosets, Nucl. Phys.B 897 (2015) 448 [arXiv:1504.07213] [INSPIRE].
ADS
MATH
Article
Google Scholar
D. Kutasov, Duality Off the Critical Point in Two-dimensional Systems With Non-abelian Symmetries, Phys. Lett.B 233 (1989) 369 [INSPIRE].
ADS
MATH
Article
Google Scholar
A. Subbotin and I.V. Tyutin, On the equivalence of dual theories, Int. J. Mod. Phys.A 11 (1996) 1315 [Erratum ibid.A 11 (1996) 2231][hep-th/9506132] [INSPIRE].
L.K. Balazs, J. Balog, P. Forgacs, N. Mohammedi, L. Palla and J. Schnittger, Quantum equivalence of sigma models related by non-abelian duality transformations, Phys. Rev.D 57 (1998) 3585 [hep-th/9704137] [INSPIRE].
ADS
MATH
Google Scholar
G. Bonneau and P.-Y. Casteill, Dualized sigma models at the two loop order, Nucl. Phys.B 607 (2001) 293 [hep-th/0103260] [INSPIRE].
ADS
MATH
Article
Google Scholar
J. Balog, P. Forgacs, Z. Horvath and L. Palla, Perturbative quantum (in)equivalence of dual sigma models in two-dimensions, Nucl. Phys. Proc. Suppl.49 (1996) 16 [hep-th/9601091] [INSPIRE].
ADS
MATH
Article
Google Scholar
D.H. Friedan, Nonlinear Models in Two + Epsilon Dimensions, Annals Phys.163 (1985) 318 [INSPIRE].
ADS
MATH
Article
Google Scholar
E. Braaten, T.L. Curtright and C.K. Zachos, Torsion and Geometrostasis in Nonlinear Sigma Models, Nucl. Phys.B 260 (1985) 630 [Erratum ibid.B 266 (1986) 748] [INSPIRE].
R.R. Metsaev and A.A. Tseytlin, Order alpha-prime (two loop) equivalence of the string equations of motion and the sigma model Weyl invariance conditions: dependence on the dilaton and the antisymmetric tensor, Nucl. Phys.B 293 (1987) 385 [INSPIRE].
ADS
Article
Google Scholar
R.R. Metsaev and A.A. Tseytlin, Two loop beta function for the generalized bosonic sigma model, Phys. Lett.B 191 (1987) 354 [INSPIRE].
ADS
Article
Google Scholar
C.M. Hull and P.K. Townsend, The Two Loop Beta Function for σ Models With Torsion, Phys. Lett.B 191 (1987) 115 [INSPIRE].
ADS
Article
Google Scholar
D. Zanon, Two Loop Beta Functions and Low-energy String Effective Action for the Two-dimensional Bosonic Nonlinear σ Model With a Wess-Zumino-Witten Term, Phys. Lett.B 191 (1987) 363 [INSPIRE].
ADS
Article
Google Scholar
N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys.99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar
\( \mathcal{N} \) = 4 Super-Yang-Mills Theory, Phys. Rev. Lett.112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].
K. Zarembo, Strings on Semisymmetric Superspaces, JHEP05 (2010) 002 [arXiv:1003.0465] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
L. Wulff, Superisometries and integrability of superstrings, JHEP05 (2014) 115 [arXiv:1402.3122] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP05 (2005) 033 [hep-th/0502086] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal deformations of
\( \mathcal{N} \) = 4 super Yang-Mills theory, JHEP07 (2005) 045 [hep-th/0503192] [INSPIRE].
ADS
Article
Google Scholar
S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP05 (2005) 069 [hep-th/0503201] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, An Integrable Deformation of the AdS5× S5Superstring, J. Phys.A 47 (2014) 495402 [arXiv:1409.1538] [INSPIRE].
MATH
MathSciNet
Google Scholar
F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS5× S5superstring action, Phys. Rev. Lett.112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].
C. Klimčík, Yang-Baxter sigma models and dS/AdS T duality, JHEP12 (2002) 051 [hep-th/0210095] [INSPIRE].
ADS
Article
Google Scholar
F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable sigma-models, JHEP11 (2013) 192 [arXiv:1308.3581] [INSPIRE].
ADS
MATH
Article
Google Scholar
C. Klimčík and P. Ševera, Dual non-Abelian duality and the Drinfeld double, Phys. Lett.B 351 (1995) 455 [hep-th/9502122] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Klimčík, Poisson-Lie T-duality, Nucl. Phys. Proc. Suppl.46 (1996) 116 [hep-th/9509095] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
B. Vicedo, Deformed integrable σ-models, classical R-matrices and classical exchange algebra on Drinfel’d doubles, J. Phys.A 48 (2015) 355203 [arXiv:1504.06303] [INSPIRE].
MathSciNet
MATH
Google Scholar
K. Sfetsos, K. Siampos and D.C. Thompson, Generalised integrable λ- and η-deformations and their relation, Nucl. Phys.B 899 (2015) 489 [arXiv:1506.05784] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
C. Klimćík, η and λ deformations as E-models, Nucl. Phys.B 900 (2015) 259 [arXiv:1508.05832] [INSPIRE].
B. Hoare and F.K. Seibold, Poisson-Lie duals of the η deformed symmetric space sigma model, JHEP11 (2017) 014 [arXiv:1709.01448] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP10 (2016) 045 [arXiv:1608.03570] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
B. Hoare and F.K. Seibold, Supergravity backgrounds of the η-deformed AdS2× S2× T6and AdS5× S5superstrings, JHEP01 (2019) 125 [arXiv:1811.07841] [INSPIRE].
ADS
Article
MATH
Google Scholar
A.M. Polyakov and P.B. Wiegmann, Theory of Nonabelian Goldstone Bosons, Phys. Lett.131B (1983) 121 [INSPIRE].
ADS
Article
Google Scholar
A.M. Polyakov, Two-dimensional quantum gravity: Superconductivity at high Tc, in: Fields, Strings and Critical Phenomena, Proc. of Les Houches 1988, eds.: E. Brézin and J. Zinn-Justin, North-Holland (1990).
E. Guadagnini, M. Martellini and M. Mintchev, Scale Invariance Sigma Models On Homogeneous Spaces, Phys. Lett.B 194 (1987) 69 [INSPIRE].
ADS
Article
Google Scholar
O.A. Solovev, Towards conversion of the space of Thirring models into the model space for groups, Phys. Lett.B 309 (1993) 275 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C.M. Hull and O.A. Solovev, Conformal points and duality of non-abelian Thirring Models and interacting WZNW models, Nucl. Phys.B 459 (1996) 243 [hep-th/9503021] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
G. Georgiou and K. Sfetsos, A new class of integrable deformations of CFTs, JHEP03 (2017) 083 [arXiv:1612.05012] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
G. Georgiou, E. Sagkrioti, K. Sfetsos and K. Siampos, Quantum aspects of doubly deformed CFTs, Nucl. Phys.B 919 (2017) 504 [arXiv:1703.00462] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
G. Georgiou, K. Sfetsos and K. Siampos, Double and cyclic λ-deformations and their canonical equivalents, Phys. Lett.B 771 (2017) 576 [arXiv:1704.07834] [INSPIRE].
ADS
MATH
Article
Google Scholar
G. Georgiou and K. Sfetsos, Integrable flows between exact CFTs, JHEP11 (2017) 078 [arXiv:1707.05149] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
B. Gerganov, A. LeClair and M. Moriconi, On the beta function for anisotropic current interactions in 2-D, Phys. Rev. Lett.86 (2001) 4753 [hep-th/0011189] [INSPIRE].
ADS
Article
Google Scholar
A. LeClair, Chiral stabilization of the renormalization group for flavor and color anisotropic current interactions, Phys. Lett.B 519 (2001) 183 [hep-th/0105092] [INSPIRE].
ADS
MATH
Article
Google Scholar
K. Sfetsos and K. Siampos, Gauged WZW-type theories and the all-loop anisotropic non-abelian Thirring model, Nucl. Phys.B 885 (2014) 583 [arXiv:1405.7803] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
C. Appadu and T.J. Hollowood, Beta function of k deformed AdS5× S5string theory, JHEP11 (2015) 095 [arXiv:1507.05420] [INSPIRE].
ADS
Article
MathSciNet
MATH
Google Scholar
E. Witten, Non-abelian Bosonization in Two Dimensions, Commun. Math. Phys.92 (1984) 455 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. Bos, Dimensional Regularization in the Wess-Zumino-Witten Model, Phys. Lett.B 189 (1987) 435 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. McKane and M. Stone, Nonlinear sigma models: a perturbative approach to symmetry restoration, Nucl. Phys.B 163 (1980) 169 [INSPIRE].
ADS
Article
Google Scholar
S. Hikami, Three Loop Beta-Functions of Nonlinear Sigma Models on Symmetric Spaces, Phys. Lett.98B (1981) 208 [INSPIRE].
ADS
Article
Google Scholar
B.E. Fridling and A. Jevicki, Dual Representations and Ultraviolet Divergences in Nonlinear σ Models, Phys. Lett.134B (1984) 70 [INSPIRE].
ADS
Article
Google Scholar
E.S. Fradkin and A.A. Tseytlin, Quantum Equivalence of Dual Field Theories, Annals Phys.162 (1985) 31 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Brézin and J. Zinn-Justin, Renormalization of the nonlinear σ model in 2 + 𝜖 dimensions. Application to the Heisenberg ferromagnets, Phys. Rev. Lett.36 (1976) 691 [INSPIRE].
S. Hikami and E. Brézin, Three Loop Calculations in the Two-Dimensional Nonlinear Sigma Model, J. Phys.A 11 (1978) 1141 [INSPIRE].
ADS
Google Scholar
E. Brézin, S. Hikami and J. Zinn-Justin, Generalized Nonlinear σ Models With Gauge Invariance, Nucl. Phys.B 165 (1980) 528 [INSPIRE].
ADS
Article
Google Scholar
A.S. Schwarz and A.A. Tseytlin, Dilaton shift under duality and torsion of elliptic complex, Nucl. Phys.B 399 (1993) 691 [hep-th/9210015] [INSPIRE].
ADS
Article
Google Scholar
I. Kawaguchi and K. Yoshida, Hidden Yangian symmetry in sigma model on squashed sphere, JHEP11 (2010) 032 [arXiv:1008.0776] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
N. Kaloper and K.A. Meissner, Duality beyond the first loop, Phys. Rev.D 56 (1997) 7940 [hep-th/9705193] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Parsons, T duality and conformal invariance at two loops, Phys. Rev.D 61 (2000) 086002 [hep-th/9912105] [INSPIRE].
I. Jack and S. Parsons, O(d, d) invariance at two loops and three loops, Phys. Rev.D 62 (2000) 026003 [hep-th/9911064] [INSPIRE].
A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys.B 350 (1991) 395 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions, Phys. Rev.D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].
ADS
Google Scholar
E. Abdalla, M.C.B. Abdalla and M. Gomes, Anomaly in the Nonlocal Quantum Charge of the ℂPn−1Model, Phys. Rev.D 23 (1981) 1080.
Google Scholar
E. Abdalla, M. Forger and M. Gomes, On the Origin of Anomalies in the Quantum Nonlocal Charge for the Generalized Nonlinear σ Models, Nucl. Phys.B 210 (1982) 181 [INSPIRE].
ADS
Article
Google Scholar
J.M. Evans, D. Kagan and C.A.S. Young, Nonlocal charges and quantum integrability of sigma models on the symmetric spaces SO(2n)/SO(n) × SO(n) and Sp(2n)/Sp(n) × Sp(n), Phys. Lett.B 597 (2004) 112 [hep-th/0404003] [INSPIRE].
ADS
MATH
Article
Google Scholar
J.M. Evans, D. Kagan, N.J. MacKay and C.A.S. Young, Quantum, higher-spin, local charges in symmetric space sigma models, JHEP01 (2005) 020 [hep-th/0408244] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A.V. Litvinov, Integrable 𝔤𝔩(n|n) Toda field theory and its sigma-model dual, arXiv:1901.04799 [INSPIRE].
D. Bykov, The worldsheet low-energy limit of the AdS4× ℂP3superstring, Nucl. Phys.B 838 (2010) 47 [arXiv:1003.2199] [INSPIRE].
ADS
Article
Google Scholar
B. Basso and A. Rej, On the integrability of two-dimensional models with U(1) × SU(N) symmetry, Nucl. Phys.B 866 (2013) 337 [arXiv:1207.0413] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. Gomes, E. Abdalla and M.C.B. Abdalla, On the Nonlocal Charge of the CP(N −1)Model and Its Supersymmetric Extension to All Orders, Phys. Rev.D 27 (1983) 825 [INSPIRE].
ADS
Google Scholar
D. Kagan and C.A.S. Young, Conformal sigma-models on supercoset targets, Nucl. Phys.B 745 (2006) 109 [hep-th/0512250] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A. Babichenko, Conformal invariance and quantum integrability of sigma models on symmetric superspaces, Phys. Lett.B 648 (2007) 254 [hep-th/0611214] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
R. Gilmore, Lie Algebras and Some of Their Applications, Dover, (2005).
A. Salam and J.A. Strathdee, On Kaluza-Klein Theory, Annals Phys.141 (1982) 316 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Castellani, On G/H geometry and its use in M theory compactifications, Annals Phys.287 (2001) 1 [hep-th/9912277] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
G. Bonneau, G. Valent and F. Delduc, Renormalization Properties Of Bosonic Nonlinear Sigma Models Built On Compact Homogeneous Kahler Manifolds, Phys. Lett.B 196 (1987) 456 [INSPIRE].
ADS
Article
Google Scholar
C. Becchi, A. Blasi, G. Bonneau, R. Collina and F. Delduc, Renormalizability and Infrared Finiteness of Nonlinear σ Models: A Regularization Independent Analysis for Compact Coset Spaces, Commun. Math. Phys.120 (1988) 121 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A.V. Bratchikov, Renormalization properties of two-dimensional homogeneous symplectic sigma models, Mod. Phys. Lett.A 7 (1992) 2229 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar