Skip to main content

On the phenomenology of sphaleron-induced processes at the LHC and beyond

A preprint version of the article is available at arXiv.

Abstract

We investigate the phenomenological aspects of non-perturbative baryon- and lepton-number-violating processes at hadron colliders. Such processes, induced by instan- ton/sphaleron configurations of the electroweak gauge fields, are believed to play a crucial role in the generation of baryon asymmetry in the early Universe at finite temperature. On the other hand, at colliders (that represent the zero-temperature high-energy regime) the rate and observability of such processes are still under debate. Motivated by current the- oretical considerations, we construct a modern event generator within the general-purpose Herwig Monte Carlo framework, that aims to capture the most relevant features of the dominant processes. We perform a detailed phenomenological analysis focussing on the Large Hadron Collider, at 13 TeV proton-proton centre-of-mass energy, a potential high- energy upgrade at 27 TeV and the proposed Future Circular Collider (FCC-hh) at 100 TeV. We derive constraints on the expected rates for various parametrisations of our model. We find that all three colliders are capable of providing meaningful information on the nature of instanton/sphaleron-induced processes at various energy scales.

References

  1. G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett.37 (1976) 8 [INSPIRE].

  2. Wikipedia, Per aspera ad astra — Wikipedia, the free encyclopedia (2019).

  3. A. Ringwald, High-energy breakdown of perturbation theory in the electroweak instanton sector, Nucl. Phys.B 330 (1990) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  4. O. Espinosa, High-energy behavior of baryon and lepton number violating scattering amplitudes and breakdown of unitarity in the standard model, Nucl. Phys.B 343 (1990) 310 [INSPIRE].

    Article  ADS  Google Scholar 

  5. P.B. Arnold and L.D. McLerran, The sphaleron strikes back, Phys. Rev.D 37 (1988) 1020 [INSPIRE].

    ADS  Google Scholar 

  6. L.D. McLerran, A.I. Vainshtein and M.B. Voloshin, Electroweak interactions become strong at energy above approximately 10 TeV, Phys. Rev.D 42 (1990) 171 [INSPIRE].

    ADS  Google Scholar 

  7. L.D. McLerran, A.I. Vainshtein and M.B. Voloshin, Strong instanton induced amplitudes in a weakly coupled theory, Phys. Rev.D 42 (1990) 180 [INSPIRE].

    ADS  Google Scholar 

  8. M.P. Mattis, The riddle of high-energy baryon number violation, Phys. Rept.214 (1992) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  9. F.L. Bezrukov et al., Semiclassical study of baryon and lepton number violation in high-energy electroweak collisions, Phys. Rev.D 68 (2003) 036005 [hep-ph/0304180] [INSPIRE].

  10. F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev.D 30 (1984) 2212 [INSPIRE].

    ADS  Google Scholar 

  11. K. Funakubo, K. Fuyuto and E. Senaha, Does a band structure affect sphaleron processes?, arXiv:1612.05431 [INSPIRE].

  12. A. Ringwald, Electroweak instantons/sphalerons at VLHC?, Phys. Lett.B 555 (2003) 227 [hep-ph/0212099] [INSPIRE].

  13. A. Ringwald, An upper bound on the total cross-section for electroweak baryon number violation, JHEP10 (2003) 008 [hep-ph/0307034] [INSPIRE].

  14. S.H.H. Tye and S.S.C. Wong, Baryon number violating scatterings in laboratories, Phys. Rev.D 96 (2017) 093004 [arXiv:1710.07223] [INSPIRE].

  15. S.H.H. Tye and S.S.C. Wong, Bloch wave function for the periodic sphaleron potential and unsuppressed baryon and lepton number violating processes, Phys. Rev.D 92 (2015) 045005 [arXiv:1505.03690] [INSPIRE].

  16. J. Ellis and K. Sakurai, Search for sphalerons in proton-proton collisions, JHEP04 (2016) 086 [arXiv:1601.03654] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Ellis, K. Sakurai and M. Spannowsky, Search for sphalerons: IceCube vs. LHC, JHEP05 (2016) 085 [arXiv:1603.06573] [INSPIRE].

  18. G. Brooijmans, P. Schichtel and M. Spannowsky, Cosmic ray air showers from sphalerons, Phys. Lett.B 761 (2016) 213 [arXiv:1602.00647] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Spannowsky and C. Tamarit, Sphalerons in composite and non-standard Higgs models, Phys. Rev.D 95 (2017) 015006 [arXiv:1611.05466] [INSPIRE].

  20. Y. Jho and S.C. Park, Constraining new physics with high multiplicity: I. Ultra-high energy cosmic rays on air-shower detector arrays, arXiv:1806.03063 [INSPIRE].

  21. D.G. Cerdeño, P. Reimitz, K. Sakurai and C. Tamarit, B + L violation at colliders and new physics, JHEP04 (2018) 076 [arXiv:1801.03492] [INSPIRE].

  22. A. Ringwald, K. Sakurai and B.R. Webber, Limits on electroweak instanton-induced processes with multiple boson production, JHEP11 (2018) 105 [arXiv:1809.10833] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L.A. Anchordoqui and I. Antoniadis, Supersymmetric sphaleron configurations as the origin of the perplexing ANITA events, Phys. Lett.B 790 (2019) 578 [arXiv:1812.01520] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Papaefstathiou and K. Sakurai, Determining the helicity structure of third generation resonances, JHEP06 (2012) 069 [arXiv:1112.3956] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J.C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Gieseke et al., HERWIG++ 2.5 release note, arXiv:1102.1672 [INSPIRE].

  27. K. Arnold et al., HERWIG++ 2.6 release note, arXiv:1205.4902 [INSPIRE].

  28. J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].

  29. J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J.C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  30. J. Bellm et al., HERWIG 7.1 release note, arXiv:1705.06919 [INSPIRE].

  31. M. Gibbs, A. Ringwald and F. Schrempp, QCD instanton induced final states in deep inelastic scattering, in the proceedings of the Deep inelastic scattering and QCD, April 24–28, Paris, France (1995), hep-ph/9506392 [INSPIRE].

  32. S. Moch, A. Ringwald and F. Schrempp, Instantons in deep inelastic scattering: The Simplest process, Nucl. Phys.B 507 (1997) 134 [hep-ph/9609445] [INSPIRE].

  33. A. Ringwald and F. Schrempp, QCDINS 2.0: a Monte Carlo generator for instanton induced processes in deep inelastic scattering, Comput. Phys. Commun.132 (2000) 267 [hep-ph/9911516] [INSPIRE].

  34. C.M. Harris, P. Richardson and B.R. Webber, CHARYBDIS: a black hole event generator, JHEP08 (2003) 033 [hep-ph/0307305] [INSPIRE].

  35. C.M. Harris et al., Exploring higher dimensional black holes at the large hadron collider, JHEP05 (2005) 053 [hep-ph/0411022] [INSPIRE].

  36. J.A. Frost et al., Phenomenology of production and decay of spinning extra-dimensional black holes at hadron colliders, JHEP10 (2009) 014 [arXiv:0904.0979] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D.-C. Dai et al., BlackMax: a black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev.D 77 (2008) 076007 [arXiv:0711.3012] [INSPIRE].

  38. V.V. Khoze and M. Spannowsky, Higgsplosion: solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons, Nucl. Phys.B 926 (2018) 95 [arXiv:1704.03447] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  39. P. Richardson, Simulations of R-parity violating SUSY models, Ph.D. thesis, Oxford University, Oxford U.K. (2000), hep-ph/0101105 [INSPIRE].

  40. R. Kleiss, W.J. Stirling and S.D. Ellis, A New Monte carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun.40 (1986) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Plätzer, RAMBO on diet, arXiv:1308.2922 [INSPIRE].

  42. R. Kleiss and W.J. Stirling, Massive multiplicities and Monte Carlo, Nucl. Phys.B 385 (1992) 413 [INSPIRE].

    Article  ADS  Google Scholar 

  43. V.V. Khoze and A. Ringwald, Total cross-section for anomalous fermion number violation via dispersion relation, Nucl. Phys.B 355 (1991) 351 [INSPIRE].

    Article  ADS  Google Scholar 

  44. CMS collaboration, Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP11 (2018) 042 [arXiv:1805.06013] [INSPIRE].

  45. M.J. Gibbs and B.R. Webber, HERBVI: a program for simulation of baryon and lepton number violating processes, Comput. Phys. Commun.90 (1995) 369 [hep-ph/9504232] [INSPIRE].

  46. G.R. Farrar and R.-b. Meng, Baryon number violation in high-energy collisions, Phys. Rev. Lett.65 (1990) 3377 [INSPIRE].

    Article  ADS  Google Scholar 

  47. M.J. Gibbs, A. Ringwald, B.R. Webber and J.T. Zadrozny, Monte Carlo simulation of baryon and lepton number violating processes at high-energies, Z. Phys.C 66 (1995) 285 [hep-ph/9406266] [INSPIRE].

  48. J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

  49. A. Papaefstathiou, K. Sakurai and S. Plaetzer, A Monte Carlo event generator for instanton/sphaleron processes in HERWIG, (2019).

  50. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  51. M. Selvaggi, DELPHES 3: a modular framework for fast-simulation of generic collider experiments, J. Phys. Conf. Ser.523 (2014) 012033 [INSPIRE].

  52. M. Cacciari, G.P. Salam and G. Soyez, The anti-k tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  Google Scholar 

  53. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Guzzi et al., CT10 parton distributions and other developments in the global QCD analysis, arXiv:1101.0561 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Papaefstathiou.

Additional information

ArXiv ePrint: 1910.04761

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papaefstathiou, A., Plätzer, S. & Sakurai, K. On the phenomenology of sphaleron-induced processes at the LHC and beyond. J. High Energ. Phys. 2019, 17 (2019). https://doi.org/10.1007/JHEP12(2019)017

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2019)017

Keywords

  • Phenomenological Models