G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett.37 (1976) 8 [INSPIRE].
Wikipedia, Per aspera ad astra — Wikipedia, the free encyclopedia (2019).
A. Ringwald, High-energy breakdown of perturbation theory in the electroweak instanton sector, Nucl. Phys.B 330 (1990) 1 [INSPIRE].
Article
ADS
Google Scholar
O. Espinosa, High-energy behavior of baryon and lepton number violating scattering amplitudes and breakdown of unitarity in the standard model, Nucl. Phys.B 343 (1990) 310 [INSPIRE].
Article
ADS
Google Scholar
P.B. Arnold and L.D. McLerran, The sphaleron strikes back, Phys. Rev.D 37 (1988) 1020 [INSPIRE].
ADS
Google Scholar
L.D. McLerran, A.I. Vainshtein and M.B. Voloshin, Electroweak interactions become strong at energy above approximately 10 TeV, Phys. Rev.D 42 (1990) 171 [INSPIRE].
ADS
Google Scholar
L.D. McLerran, A.I. Vainshtein and M.B. Voloshin, Strong instanton induced amplitudes in a weakly coupled theory, Phys. Rev.D 42 (1990) 180 [INSPIRE].
ADS
Google Scholar
M.P. Mattis, The riddle of high-energy baryon number violation, Phys. Rept.214 (1992) 159 [INSPIRE].
Article
ADS
Google Scholar
F.L. Bezrukov et al., Semiclassical study of baryon and lepton number violation in high-energy electroweak collisions, Phys. Rev.D 68 (2003) 036005 [hep-ph/0304180] [INSPIRE].
F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev.D 30 (1984) 2212 [INSPIRE].
ADS
Google Scholar
K. Funakubo, K. Fuyuto and E. Senaha, Does a band structure affect sphaleron processes?, arXiv:1612.05431 [INSPIRE].
A. Ringwald, Electroweak instantons/sphalerons at VLHC?, Phys. Lett.B 555 (2003) 227 [hep-ph/0212099] [INSPIRE].
A. Ringwald, An upper bound on the total cross-section for electroweak baryon number violation, JHEP10 (2003) 008 [hep-ph/0307034] [INSPIRE].
S.H.H. Tye and S.S.C. Wong, Baryon number violating scatterings in laboratories, Phys. Rev.D 96 (2017) 093004 [arXiv:1710.07223] [INSPIRE].
S.H.H. Tye and S.S.C. Wong, Bloch wave function for the periodic sphaleron potential and unsuppressed baryon and lepton number violating processes, Phys. Rev.D 92 (2015) 045005 [arXiv:1505.03690] [INSPIRE].
J. Ellis and K. Sakurai, Search for sphalerons in proton-proton collisions, JHEP04 (2016) 086 [arXiv:1601.03654] [INSPIRE].
Article
ADS
Google Scholar
J. Ellis, K. Sakurai and M. Spannowsky, Search for sphalerons: IceCube vs. LHC, JHEP05 (2016) 085 [arXiv:1603.06573] [INSPIRE].
G. Brooijmans, P. Schichtel and M. Spannowsky, Cosmic ray air showers from sphalerons, Phys. Lett.B 761 (2016) 213 [arXiv:1602.00647] [INSPIRE].
Article
ADS
Google Scholar
M. Spannowsky and C. Tamarit, Sphalerons in composite and non-standard Higgs models, Phys. Rev.D 95 (2017) 015006 [arXiv:1611.05466] [INSPIRE].
Y. Jho and S.C. Park, Constraining new physics with high multiplicity: I. Ultra-high energy cosmic rays on air-shower detector arrays, arXiv:1806.03063 [INSPIRE].
D.G. Cerdeño, P. Reimitz, K. Sakurai and C. Tamarit, B + L violation at colliders and new physics, JHEP04 (2018) 076 [arXiv:1801.03492] [INSPIRE].
A. Ringwald, K. Sakurai and B.R. Webber, Limits on electroweak instanton-induced processes with multiple boson production, JHEP11 (2018) 105 [arXiv:1809.10833] [INSPIRE].
Article
ADS
Google Scholar
L.A. Anchordoqui and I. Antoniadis, Supersymmetric sphaleron configurations as the origin of the perplexing ANITA events, Phys. Lett.B 790 (2019) 578 [arXiv:1812.01520] [INSPIRE].
Article
ADS
Google Scholar
A. Papaefstathiou and K. Sakurai, Determining the helicity structure of third generation resonances, JHEP06 (2012) 069 [arXiv:1112.3956] [INSPIRE].
Article
ADS
Google Scholar
M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J.C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
Article
ADS
Google Scholar
S. Gieseke et al., HERWIG++ 2.5 release note, arXiv:1102.1672 [INSPIRE].
K. Arnold et al., HERWIG++ 2.6 release note, arXiv:1205.4902 [INSPIRE].
J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].
J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J.C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
J. Bellm et al., HERWIG 7.1 release note, arXiv:1705.06919 [INSPIRE].
M. Gibbs, A. Ringwald and F. Schrempp, QCD instanton induced final states in deep inelastic scattering, in the proceedings of the Deep inelastic scattering and QCD, April 24–28, Paris, France (1995), hep-ph/9506392 [INSPIRE].
S. Moch, A. Ringwald and F. Schrempp, Instantons in deep inelastic scattering: The Simplest process, Nucl. Phys.B 507 (1997) 134 [hep-ph/9609445] [INSPIRE].
A. Ringwald and F. Schrempp, QCDINS 2.0: a Monte Carlo generator for instanton induced processes in deep inelastic scattering, Comput. Phys. Commun.132 (2000) 267 [hep-ph/9911516] [INSPIRE].
C.M. Harris, P. Richardson and B.R. Webber, CHARYBDIS: a black hole event generator, JHEP08 (2003) 033 [hep-ph/0307305] [INSPIRE].
C.M. Harris et al., Exploring higher dimensional black holes at the large hadron collider, JHEP05 (2005) 053 [hep-ph/0411022] [INSPIRE].
J.A. Frost et al., Phenomenology of production and decay of spinning extra-dimensional black holes at hadron colliders, JHEP10 (2009) 014 [arXiv:0904.0979] [INSPIRE].
Article
ADS
Google Scholar
D.-C. Dai et al., BlackMax: a black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev.D 77 (2008) 076007 [arXiv:0711.3012] [INSPIRE].
V.V. Khoze and M. Spannowsky, Higgsplosion: solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons, Nucl. Phys.B 926 (2018) 95 [arXiv:1704.03447] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
P. Richardson, Simulations of R-parity violating SUSY models, Ph.D. thesis, Oxford University, Oxford U.K. (2000), hep-ph/0101105 [INSPIRE].
R. Kleiss, W.J. Stirling and S.D. Ellis, A New Monte carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun.40 (1986) 359 [INSPIRE].
Article
ADS
Google Scholar
S. Plätzer, RAMBO on diet, arXiv:1308.2922 [INSPIRE].
R. Kleiss and W.J. Stirling, Massive multiplicities and Monte Carlo, Nucl. Phys.B 385 (1992) 413 [INSPIRE].
Article
ADS
Google Scholar
V.V. Khoze and A. Ringwald, Total cross-section for anomalous fermion number violation via dispersion relation, Nucl. Phys.B 355 (1991) 351 [INSPIRE].
Article
ADS
Google Scholar
CMS collaboration, Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, JHEP11 (2018) 042 [arXiv:1805.06013] [INSPIRE].
M.J. Gibbs and B.R. Webber, HERBVI: a program for simulation of baryon and lepton number violating processes, Comput. Phys. Commun.90 (1995) 369 [hep-ph/9504232] [INSPIRE].
G.R. Farrar and R.-b. Meng, Baryon number violation in high-energy collisions, Phys. Rev. Lett.65 (1990) 3377 [INSPIRE].
Article
ADS
Google Scholar
M.J. Gibbs, A. Ringwald, B.R. Webber and J.T. Zadrozny, Monte Carlo simulation of baryon and lepton number violating processes at high-energies, Z. Phys.C 66 (1995) 285 [hep-ph/9406266] [INSPIRE].
J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].
A. Papaefstathiou, K. Sakurai and S. Plaetzer, A Monte Carlo event generator for instanton/sphaleron processes in HERWIG, (2019).
S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
M. Selvaggi, DELPHES 3: a modular framework for fast-simulation of generic collider experiments, J. Phys. Conf. Ser.523 (2014) 012033 [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-k
tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
Article
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
Article
ADS
Google Scholar
M. Guzzi et al., CT10 parton distributions and other developments in the global QCD analysis, arXiv:1101.0561 [INSPIRE].