Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Anomaly-free dark matter with harmless direct detection constraints

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 20 December 2018
  • Volume 2018, article number 126, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Anomaly-free dark matter with harmless direct detection constraints
Download PDF
  • S. Caron1,2,
  • J. A. Casas3,
  • J. Quilis3 &
  • …
  • R. Ruiz de Austri4 
  • 401 Accesses

  • 14 Citations

  • 3 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Dark matter (DM) interacting with the SM fields via a Z′-boson (‘Z′-portal’) remains one of the most attractive WIMP scenarios, both from the theoretical and the phenomenological points of view. In order to avoid the strong constraints from direct detection and dilepton production, it is highly convenient that the Z′ has axial coupling to DM and leptophobic couplings to the SM particles, respectively. The latter implies that the associated U(1) coincides with baryon number in the SM sector. In this paper we completely classify the possible anomaly-free leptophobic Z′ with minimal dark sector, including the cases where the coupling to DM is axial. The resulting scenario is very predictive and perfectly viable from the present constraints from DM detection, EW observables and LHC data (di-lepton, di-jet and mono-jet production). We analyze all these constraints, obtaining the allowed areas in the parameter space, which generically prefer \( {m}_{Z^{\prime }} \) ≲ 500 GeV, apart from resonant regions. The best chances to test these viable areas come from future LHC measurements.

Article PDF

Download to read the full article text

Similar content being viewed by others

On dark matter interactions with the Standard Model through an anomalous Z′

Article Open access 24 October 2017

Multilepton signatures from dark matter at the LHC

Article Open access 21 September 2022

Broadening dark matter searches at the LHC: mono-X versus darkonium channels

Article Open access 04 October 2018
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Langacker, R.W. Robinett and J.L. Rosner, New Heavy Gauge Bosons in pp and pp Collisions, Phys. Rev. D 30 (1984) 1470 [INSPIRE].

    ADS  Google Scholar 

  2. P. Langacker, The Physics of Heavy Z′ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    Article  ADS  Google Scholar 

  3. P. Fileviez Perez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. D 82 (2010) 079901] [arXiv:1002.1754] [INSPIRE].

  4. M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z′, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge Theory for Baryon and Lepton Numbers with Leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Duerr and P. Fileviez Perez, Baryonic Dark Matter, Phys. Lett. B 732 (2014) 101 [arXiv:1309.3970] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Alves, S. Profumo and F.S. Queiroz, The dark Z′ portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z′ and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].

    Article  ADS  Google Scholar 

  9. O. Lebedev and Y. Mambrini, Axial dark matter: The case for an invisible Z′, Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Duerr and P. Fileviez Perez, Theory for Baryon Number and Dark Matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].

    ADS  Google Scholar 

  11. P. Fileviez Perez, New Paradigm for Baryon and Lepton Number Violation, Phys. Rept. 597 (2015) 1 [arXiv:1501.01886] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Duerr, P. Fileviez Perez and J. Smirnov, Gamma Lines from Majorana Dark Matter, Phys. Rev. D 93 (2016) 023509 [arXiv:1508.01425] [INSPIRE].

    ADS  Google Scholar 

  13. F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].

    Article  ADS  Google Scholar 

  14. T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto, Complementarity of DM searches in a consistent simplified model: the case of Z′, JHEP 10 (2016) 071 [arXiv:1605.06513] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Z′ models from LHC dijet searches and implications for dark matter, JHEP 09 (2016) 018 [arXiv:1605.07940] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Arcadi, M.D. Campos, M. Lindner, A. Masiero and F.S. Queiroz, Dark sequential Z′ portal: Collider and direct detection experiments, Phys. Rev. D 97 (2018) 043009 [arXiv:1708.00890] [INSPIRE].

    ADS  Google Scholar 

  17. P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Ohmer and H.H. Patel, Leptobaryons as Majorana Dark Matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].

    ADS  Google Scholar 

  19. A. Ismail, W.-Y. Keung, K.-H. Tsao and J. Unwin, Axial vector Z′ and anomaly cancellation, Nucl. Phys. B 918 (2017) 220 [arXiv:1609.02188] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. N. Okada, S. Okada and D. Raut, SU(5) × U(1)X grand unification with minimal seesaw and Z′-portal dark matter, Phys. Lett. B 780 (2018) 422 [arXiv:1712.05290] [INSPIRE].

    Article  ADS  Google Scholar 

  21. N. Okada and S. Okada, Z′-portal right-handed neutrino dark matter in the minimal U(1)X extended Standard Model, Phys. Rev. D 95 (2017) 035025 [arXiv:1611.02672] [INSPIRE].

    ADS  Google Scholar 

  22. T. Bandyopadhyay, G. Bhattacharyya, D. Das and A. Raychaudhuri, Reappraisal of constraints on Z′ models from unitarity and direct searches at the LHC, Phys. Rev. D 98 (2018) 035027 [arXiv:1803.07989] [INSPIRE].

    ADS  Google Scholar 

  23. J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Dark Matter Models are not so Simple, JHEP 08 (2017) 053 [arXiv:1704.03850] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Pais, Remark on baryon conservation, Phys. Rev. D 8 (1973) 1844 [INSPIRE].

    ADS  Google Scholar 

  25. S. Rajpoot, Gauge symmetries of electroweak interactions, Int. J. Theor. Phys. 27 (1988) 689 [INSPIRE].

    Article  Google Scholar 

  26. R. Foot, G.C. Joshi and H. Lew, Gauged Baryon and Lepton Numbers, Phys. Rev. D 40 (1989) 2487 [INSPIRE].

    ADS  Google Scholar 

  27. C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].

  28. H. Georgi and S.L. Glashow, Decays of a leptophobic gauge boson, Phys. Lett. B 387 (1996) 341 [hep-ph/9607202] [INSPIRE].

  29. T.R. Dulaney, P. Fileviez Perez and M.B. Wise, Dark Matter, Baryon Asymmetry and Spontaneous B and L Breaking, Phys. Rev. D 83 (2011) 023520 [arXiv:1005.0617] [INSPIRE].

    ADS  Google Scholar 

  30. P. Fileviez Perez and M.B. Wise, Breaking Local Baryon and Lepton Number at the TeV Scale, JHEP 08 (2011) 068 [arXiv:1106.0343] [INSPIRE].

    Article  MATH  Google Scholar 

  31. J.M. Arnold, P. Fileviez Pérez, B. Fornal and S. Spinner, B and L at the supersymmetry scale, dark matter and R-parity violation, Phys. Rev. D 88 (2013) 115009 [arXiv:1310.7052] [INSPIRE].

    ADS  Google Scholar 

  32. P. Fileviez Pérez and H.H. Patel, Baryon Asymmetry, Dark Matter and Local Baryon Number, Phys. Lett. B 731 (2014) 232 [arXiv:1311.6472] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. B. Batell, P. deNiverville, D. McKeen, M. Pospelov and A. Ritz, Leptophobic Dark Matter at Neutrino Factories, Phys. Rev. D 90 (2014) 115014 [arXiv:1405.7049] [INSPIRE].

  34. M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Corianò, L. Delle Rose and C. Marzo, Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1)B − L, JHEP 02 (2016) 135 [arXiv:1510.02379] [INSPIRE].

    Article  ADS  Google Scholar 

  36. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  37. G. Arcadi, Y. Mambrini and F. Richard, Z-portal dark matter, JCAP 03 (2015) 018 [arXiv:1411.2985] [INSPIRE].

    Article  ADS  Google Scholar 

  38. XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  39. M. Baak and R. Kogler, The global electroweak Standard Model fit after the Higgs discovery, in Proceedings, 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, March 2–9, 2013, pp. 349-358 (2013) [arXiv:1306.0571] [INSPIRE].

  40. ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36.1 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-027.

  41. ATLAS collaboration, Search for new light resonances decaying to jet pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-070.

  42. ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].

  43. ATLAS collaboration, Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 121 (2018) 081801 [arXiv:1804.03496] [INSPIRE].

  44. ATLAS collaboration, Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032016 [arXiv:1805.09299] [INSPIRE].

  45. ATLAS collaboration, Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 788 (2019) 316 [arXiv:1801.08769] [INSPIRE].

  46. UA2 collaboration, J. Alitti et al., A Search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN \( \overline{p}p \) collider, Nucl. Phys. B 400 (1993) 3 [INSPIRE].

  47. CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt{s} \) = 1.96-TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].

  48. D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].

  49. ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [Erratum ibid. C 75 (2015) 408] [arXiv:1502.01518] [INSPIRE].

  50. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

  51. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  52. M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Weak Interactions of Ultraheavy Fermions, Phys. Lett. B 78 (1978) 285 [INSPIRE].

    Article  ADS  Google Scholar 

  53. J. Ellis, M. Fairbairn and P. Tunney, Phenomenological Constraints on Anomaly-Free Dark Matter Models, arXiv:1807.02503 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science, Radboud University Nijmegen, Mailbox 79, P.O. Box 9010, NL-6500 GL, Nijmegen, The Netherlands

    S. Caron

  2. Nikhef, Science Park, Amsterdam, The Netherlands

    S. Caron

  3. Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 13-15, 28049, Madrid, Spain

    J. A. Casas & J. Quilis

  4. Instituto de Física Corpuscular, IFIC-UV/CSIC, C/ del Catedrátic José Beltrán Martinez, 2, 46980, Valencia, Spain

    R. Ruiz de Austri

Authors
  1. S. Caron
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J. A. Casas
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. J. Quilis
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. R. Ruiz de Austri
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to J. Quilis.

Additional information

ArXiv ePrint: 1807.07921

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caron, S., Casas, J.A., Quilis, J. et al. Anomaly-free dark matter with harmless direct detection constraints. J. High Energ. Phys. 2018, 126 (2018). https://doi.org/10.1007/JHEP12(2018)126

Download citation

  • Received: 17 September 2018

  • Revised: 29 November 2018

  • Accepted: 07 December 2018

  • Published: 20 December 2018

  • DOI: https://doi.org/10.1007/JHEP12(2018)126

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature