Abstract
We explore kinetic mixing between two Abelian gauge theories that have both electric and magnetic charges. When one of the photons becomes massive, novel effects arise in the low-energy effective theory, including the failure of Dirac charge quantization as particles from one sector obtain parametrically small couplings to the photon of the other. We maintain a manifest SL(2, ℤ) duality throughout our analysis, which is the diagonal subgroup of the dualities of the two un-mixed gauge theories.
Article PDF
References
A. Hook and J. Huang, Bounding millimagnetically charged particles with magnetars, Phys. Rev. D 96 (2017) 055010 [arXiv:1705.01107] [INSPIRE].
B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
F. Brummer and J. Jaeckel, Minicharges and Magnetic Monopoles, Phys. Lett. B 675 (2009) 360 [arXiv:0902.3615] [INSPIRE].
F. Brummer, J. Jaeckel and V.V. Khoze, Magnetic Mixing: Electric Minicharges from Magnetic Monopoles, JHEP 06 (2009) 037 [arXiv:0905.0633] [INSPIRE].
C. Gomez Sanchez and B. Holdom, Monopoles, strings and dark matter, Phys. Rev. D 83 (2011) 123524 [arXiv:1103.1632] [INSPIRE].
P.A.M. Dirac, Quantised singularities in the electromagnetic field, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE].
J.S. Schwinger, Magnetic charge and quantum field theory, Phys. Rev. 144 (1966) 1087 [INSPIRE].
J.S. Schwinger, Sources and magnetic charge, Phys. Rev. 173 (1968) 1536 [INSPIRE].
J.S. Schwinger, Magnetic Charge and the Charge Quantization Condition, Phys. Rev. D 12 (1975) 3105 [INSPIRE].
D. Zwanziger, Quantum field theory of particles with both electric and magnetic charges, Phys. Rev. 176 (1968) 1489 [INSPIRE].
P.A.M. Dirac, The theory of magnetic poles, Phys. Rev. 74 (1948) 817 [INSPIRE].
C.R. Hagen, Noncovariance of the Dirac Monopole, Phys. Rev. 140 (1965) B804 [INSPIRE].
D. Zwanziger, Local Lagrangian quantum field theory of electric and magnetic charges, Phys. Rev. D 3 (1971) 880 [INSPIRE].
R.A. Brandt and F. Neri, Remarks on Zwanziger’s Local Quantum Field Theory of Electric and Magnetic Charge, Phys. Rev. D 18 (1978) 2080 [INSPIRE].
R.A. Brandt, F. Neri and D. Zwanziger, Lorentz Invariance of the Quantum Field Theory of Electric and Magnetic Charge, Phys. Rev. Lett. 40 (1978) 147 [INSPIRE].
R.A. Brandt, F. Neri and D. Zwanziger, Lorentz Invariance From Classical Particle Paths in Quantum Field Theory of Electric and Magnetic Charge, Phys. Rev. D 19 (1979) 1153 [INSPIRE].
C. Csáki, Y. Shirman and J. Terning, Anomaly Constraints on Monopoles and Dyons, Phys. Rev. D 81 (2010) 125028 [arXiv:1003.0448] [INSPIRE].
J.L. Cardy and E. Rabinovici, Phase Structure of Z(p) Models in the Presence of a Theta Parameter, Nucl. Phys. B 205 (1982) 1 [INSPIRE].
J.L. Cardy, Duality and the Theta Parameter in Abelian Lattice Models, Nucl. Phys. B 205 (1982) 17 [INSPIRE].
A.D. Shapere and F. Wilczek, Selfdual Models with Theta Terms, Nucl. Phys. B 320 (1989) 669 [INSPIRE].
C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].
E. Witten, On S duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].
E.P. Verlinde, Global aspects of electric-magnetic duality, Nucl. Phys. B 455 (1995) 211 [hep-th/9506011] [INSPIRE].
Y. Lozano, S duality in gauge theories as a canonical transformation, Phys. Lett. B 364 (1995) 19 [hep-th/9508021] [INSPIRE].
A.A. Kehagias, A canonical approach to s duality in Abelian gauge theory, hep-th/9508159 [INSPIRE].
A. Strominger, Magnetic Corrections to the Soft Photon Theorem, Phys. Rev. Lett. 116 (2016) 031602 [arXiv:1509.00543] [INSPIRE].
L.V. Laperashvili and H.B. Nielsen, Dirac relation and renormalization group equations for electric and magnetic fine structure constants, Mod. Phys. Lett. A 14 (1999) 2797 [hep-th/9910101] [INSPIRE].
K. Colwell and J. Terning, S-duality and Helicity Amplitudes, JHEP 03 (2016) 068 [arXiv:1510.07627] [INSPIRE].
J.H. Schwarz and A. Sen, Duality symmetric actions, Nucl. Phys. B 411 (1994) 35 [hep-th/9304154] [INSPIRE].
J. Terning and C.B. Verhaaren, Resolving the Weinberg Paradox with Topology, arXiv:1809.05102 [INSPIRE].
E. Witten, Dyons of Charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].
G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].
A.M. Polyakov, Particle Spectrum in the Quantum Field Theory, JETP Lett. 20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430] [INSPIRE].
P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].
S.R. Coleman, The Magnetic Monopole Fifty Years Later, HUTP-82-A032 [INSPIRE].
Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115 (1959) 485 [INSPIRE].
N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].
C.G. Callan Jr., Dyon-Fermion Dynamics, Phys. Rev. D 26 (1982) 2058 [INSPIRE].
J.A. Harvey, Magnetic Monopoles With Fractional Charges, Phys. Lett. B 131 (1983) 104 [INSPIRE].
A.J. Niemi, M.B. Paranjape and G.W. Semenoff, On the Electric Charge of the Magnetic Monopole, Phys. Rev. Lett. 53 (1984) 515 [INSPIRE].
A.S. Goldhaber, Role of Spin in the Monopole Problem, Phys. Rev. 140 (1965) B1407 [INSPIRE].
J.J. Thomson, On Momentum in the Electric Field, Philos. Mag. 8 (1904) 331.
G. ’t Hooft, Gauge Fields with Unified Weak, Electromagnetic, and Strong Interactions, talk given at EPS International Conference on High Energy Physics, Palermo, Italy, June 23–28, 1975, published in High Energy Physics, A. Zichichi ed., Editrice Compositori, Bologna, Italy, (1976).
S. Mandelstam, Vortices and Quark Confinement in Nonabelian Gauge Theories, Phys. Rept. 23 (1976) 245 [INSPIRE].
S. Mandelstam, Charge-Monopole Duality and the Phases of Nonabelian Gauge Theories, Phys. Rev. D 19 (1979) 2391 [INSPIRE].
H.B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].
R. Acharya and Z. Horvath, Taylor’s nonclassical theory of magnetic monopoles as a spontaneously broken UL1 × UR1 model, Lett. Nuovo Cim. 8S2 (1973) 513 [INSPIRE].
M. Creutz, The Higgs Mechanism and Quark Confinement, Phys. Rev. D 10 (1974) 2696 [INSPIRE].
A. Jevicki and P. Senjanovic, String-Like Solution of Higgs Model with Magnetic Monopoles, Phys. Rev. D 11 (1975) 860 [INSPIRE].
A.P. Balachandran, H. Rupertsberger and J. Schechter, Monopole Theories with Massless and Massive Gauge Fields, Phys. Rev. D 11 (1975) 2260 [INSPIRE].
F.V. Gubarev, M.I. Polikarpov and V.I. Zakharov, Monopole-anti-monopole interaction in Abelian Higgs model, Phys. Lett. B 438 (1998) 147 [hep-th/9805175] [INSPIRE].
S. Weinberg, Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) B988 [INSPIRE].
Y. Nambu, String-Like Configurations in the Weinberg-Salam Theory, Nucl. Phys. B 130 (1977) 505 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1808.09459
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Terning, J., Verhaaren, C.B. Dark monopoles and SL(2, ℤ) duality. J. High Energ. Phys. 2018, 123 (2018). https://doi.org/10.1007/JHEP12(2018)123
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2018)123