High-dimensional neutrino masses


For Majorana neutrino masses the lowest dimensional operator possible is the Weinberg operator at d = 5. Here we discuss the possibility that neutrino masses originate from higher dimensional operators. Specifically, we consider all tree-level decompositions of the d = 9, d = 11 and d = 13 neutrino mass operators. With renormalizable interactions only, we find 18 topologies and 66 diagrams for d = 9, and 92 topologies plus 504 diagrams at the d = 11 level. At d = 13 there are already 576 topologies and 4199 diagrams. However, among all these there are only very few genuine neutrino mass models: At d = (9, 11, 13) we find only (2,2,2) genuine diagrams and a total of (2,2,6) models. Here, a model is considered genuine at level d if it automatically forbids lower order neutrino masses without the use of additional symmetries. We also briefly discuss how neutrino masses and angles can be easily fitted in these high-dimensional models.

A preprint version of the article is available at ArXiv.


  1. [1]

    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].

  3. [3]

    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

  4. [4]

    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

  5. [5]

    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  6. [6]

    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. 94B (1980) 61 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

  8. [8]

    C. Wetterich, Neutrino masses and the scale of B-L violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].

  9. [9]

    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

  10. [10]

    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

  11. [11]

    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

  12. [12]

    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

  13. [13]

    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the d = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].

  14. [14]

    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

  15. [15]

    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  16. [16]

    Y. Cai, J. Herrero-García, M.A. Schmidt, A. Vicente and R.R. Volkas, From the trees to the forest: a review of radiative neutrino mass models, Front. in Phys. 5 (2017) 63 [arXiv:1706.08524] [INSPIRE].

  17. [17]

    A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. 93B (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].

  18. [18]

    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].

  19. [19]

    K.S. Babu, Model of ‘calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].

  20. [20]

    D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, Systematic classification of two-loop realizations of the Weinberg operator, JHEP 03 (2015) 040 [arXiv:1411.7038] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].

  22. [22]

    M. Gustafsson, J.M. No and M.A. Rivera, Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett. 110 (2013) 211802 [Erratum ibid. 112 (2014) 259902] [arXiv:1212.4806] [INSPIRE].

  23. [23]

    R. Cepedello, R.M. Fonseca and M. Hirsch, Systematic classification of three-loop realizations of the Weinberg operator, JHEP 10 (2018) 197 [arXiv:1807.00629] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than d = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].

  25. [25]

    K.S. Babu, S. Nandi and Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged Higgs bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].

  26. [26]

    R. Cepedello, M. Hirsch and J.C. Helo, Loop neutrino masses from d = 7 operator, JHEP 07 (2017) 079 [arXiv:1705.01489] [INSPIRE].

  27. [27]

    R. Cepedello, M. Hirsch and J.C. Helo, Lepton number violating phenomenology of d = 7 neutrino mass models, JHEP 01 (2018) 009 [arXiv:1709.03397] [INSPIRE].

  28. [28]

    I. Picek and B. Radovcic, Novel TeV-scale seesaw mechanism with Dirac mediators, Phys. Lett. B 687 (2010) 338 [arXiv:0911.1374] [INSPIRE].

  29. [29]

    K. Kumericki, I. Picek and B. Radovcic, TeV-scale seesaw with quintuplet fermions, Phys. Rev. D 86 (2012) 013006 [arXiv:1204.6599] [INSPIRE].

  30. [30]

    Y. Liao, Cascade seesaw for tiny neutrino mass, JHEP 06 (2011) 098 [arXiv:1011.3633] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  31. [31]

    K.L. McDonald, Minimal tree-level seesaws with a heavy intermediate Fermion, JHEP 07 (2013) 020 [arXiv:1303.4573] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    K.L. McDonald, Probing exotic fermions from a seesaw/radiative model at the LHC, JHEP 11 (2013) 131 [arXiv:1310.0609] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    T. Nomura and H. Okada, Neutrino mass with large SU(2)L multiplet fields, Phys. Rev. D 96 (2017) 095017 [arXiv:1708.03204] [INSPIRE].

  34. [34]

    T. Nomura, H. Okada and Y. Orikasa, SU(2)L septet scalar linking to a radiative neutrino model, Phys. Rev. D 94 (2016) 055012 [arXiv:1605.02601] [INSPIRE].

  35. [35]

    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].

  36. [36]

    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

  37. [37]

    Y. Liao, Unique neutrino mass operator at any mass dimension, Phys. Lett. B 694 (2011) 346 [arXiv:1009.1692] [INSPIRE].

  38. [38]

    ATLAS collaboration, Search for doubly-charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2017-053 (2017).

  39. [39]

    R.C. Read, A survey of graph generation techniques, in Combinatorial Mathematics VIII, K.L. McAvaney ed., Springer (1981).

  40. [40]

    R.D. Cameron et al., Cataloguing the graphs on 10 vertices, J. Graph Theory 9 (1985) 551.

    MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].

  42. [42]

    [42 F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].

  43. [43]

    F. Staub, T. Ohl, W. Porod and C. Speckner, A tool box for implementing supersymmetric models, Comput. Phys. Commun. 183 (2012) 2165 [arXiv:1109.5147] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

  45. [45]

    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].

  46. [46]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    CMS collaboration, Search for evidence of the type-III seesaw mechanism in multilepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 119 (2017) 221802 [arXiv:1708.07962] [INSPIRE].

  48. [48]

    P.F. de Salas et al., Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].

  49. [49]

    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Gaetana Anamiati.

Additional information

ArXiv ePrint: 1806.07264

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anamiati, G., Castillo-Felisola, O., Fonseca, R.M. et al. High-dimensional neutrino masses. J. High Energ. Phys. 2018, 66 (2018). https://doi.org/10.1007/JHEP12(2018)066

Download citation


  • Beyond Standard Model
  • Neutrino Physics