S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT Operator Spectrum at Large Global Charge, JHEP
12 (2015) 071 [arXiv:1505.01537] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
L. Álvarez-Gaumé, O. Loukas, D. Orlando and S. Reffert, Compensating strong coupling with large charge, JHEP
04 (2017) 059 [arXiv:1610.04495] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
O. Loukas, Abelian scalar theory at large global charge, Fortsch. Phys.
65 (2017) 1700028 [arXiv:1612.08985] [INSPIRE].
MathSciNet
Article
Google Scholar
A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone Bosons and CFT data, JHEP
06 (2017) 011 [arXiv:1611.02912] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, A Note on Inhomogeneous Ground States at Large Global Charge, arXiv:1705.05825 [INSPIRE].
S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, Observables in Inhomogeneous Ground States at Large Global Charge, arXiv:1804.06495 [INSPIRE].
O. Loukas, D. Orlando and S. Reffert, Matrix models at large charge, JHEP
10 (2017) 085 [arXiv:1707.00710] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
O. Loukas, A matrix CFT at multiple large charges, JHEP
06 (2018) 164 [arXiv:1711.07990] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Hellerman and S. Maeda, On the Large R-charge Expansion in
\( \mathcal{N}=2 \)
Superconformal Field Theories, JHEP
12 (2017) 135 [arXiv:1710.07336] [INSPIRE].
S. Hellerman, S. Maeda and M. Watanabe, Operator Dimensions from Moduli, JHEP
10 (2017) 089 [arXiv:1706.05743] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Hellerman, S. Maeda, D. Orlando, S. Reffert and M. Watanabe, Universal correlation functions in rank 1 SCFTs, arXiv:1804.01535 [INSPIRE].
A. Bourget, D. Rodriguez-Gomez and J.G. Russo, A limit for large R-charge correlators in
\( \mathcal{N}=2 \)
theories, JHEP
05 (2018) 074 [arXiv:1803.00580] [INSPIRE].
G. Cuomo, A. de la Fuente, A. Monin, D. Pirtskhalava and R. Rattazzi, Rotating superfluids and spinning charged operators in conformal field theory, Phys. Rev.
D 97 (2018) 045012 [arXiv:1711.02108] [INSPIRE].
D. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal Bootstrap At Large Charge, JHEP
05 (2018) 043 [arXiv:1710.11161] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
O. Loukas, D. Orlando, S. Reffert and D. Sarkar, An AdS/EFT correspondence at large charge, Nucl. Phys.
B 934 (2018) 437 [arXiv:1804.04151] [INSPIRE].
D. Banerjee, S. Chandrasekharan and D. Orlando, Conformal dimensions via large charge expansion, Phys. Rev. Lett.
120 (2018) 061603 [arXiv:1707.00711] [INSPIRE].
A. De La Fuente, The large charge expansion at large N , JHEP
08 (2018) 041 [arXiv:1805.00501] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
M. Randeria, W. Zwerger and M. Zwierlein, The BCS-BEC Crossover and the Unitary Fermi Gas, Springer, Lect. Notes Phys.
836 (2012) 1.
W. Bakr et al., Strongly interacting Fermi gases, EPJ Web Conf.
57 (2013) 01002.
D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas, Annals Phys.
321 (2006) 197 [cond-mat/0509786] [INSPIRE].
Y.-H. Chen, F. Wilczek, E. Witten and B.I. Halperin, On Anyon Superconductivity, Int. J. Mod. Phys.
B 3 (1989) 1001 [INSPIRE].
R. Jackiw and S.-Y. Pi, Finite and infinite symmetries in (2 + 1)-dimensional field theory, hep-th/9206092 [INSPIRE].
O. Bergman and G. Lozano, Aharonov-Bohm scattering, contact interactions and scale invariance, Annals Phys.
229 (1994) 416 [hep-th/9302116] [INSPIRE].
ADS
Article
Google Scholar
Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev.
D 76 (2007) 086004 [arXiv:0706.3746] [INSPIRE].
S.M. Kravec and S. Pal, Nonrelativistic Conformal Field Theories in the Large Charge Sector, arXiv:1809.08188 [INSPIRE].
M. Greiter, F. Wilczek and E. Witten, Hydrodynamic Relations in Superconductivity, Mod. Phys. Lett.
B 3 (1989) 903 [INSPIRE].
H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev.
D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE].
N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett.
17 (1966) 1133 [INSPIRE].
ADS
Article
Google Scholar
S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys.
31 (1973) 259 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar