Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Amplitudes, recursion relations and unitarity in the Abelian Higgs model

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 01 December 2017
  • Volume 2017, article number 2, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Amplitudes, recursion relations and unitarity in the Abelian Higgs model
Download PDF
  • Ronald Kleiss1 &
  • Oscar Boher Luna1 
  • 316 Accesses

  • 1 Citation

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The Abelian Higgs model forms an essential part of the electroweak standard model: it is the sector containing only Z0 and Higgs bosons. We present a diagram-based proof of the tree-level unitarity of this model inside the unitary gauge, where only physical degrees of freedom occur. We derive combinatorial recursion relations for off-shell amplitudes in the massless approximation, which allows us to prove the cancellation of the first two orders in energy of unitarity-violating high-energy behaviour for any tree-level amplitude in this model. We describe a deformation of the amplitudes by extending the physical phase space to at least 7 spacetime dimensions, which leads to on-shell recursion relations à la BCFW. These lead to a simple proof that all on-shell tree amplitudes obey partial-wave unitarity.

Article PDF

Download to read the full article text

Similar content being viewed by others

Universal dual amplitudes and asymptotic expansions for \(gg\rightarrow H\) and \(H\rightarrow \gamma \gamma \) in four dimensions

Article Open access 17 March 2018

Celestial holography meets twisted holography: 4d amplitudes from chiral correlators

Article Open access 31 October 2022

Generic two-loop Higgs mass calculation from a diagrammatic approach

Article Open access 26 June 2015
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P.W. Anderson, Plasmons, gauge invariance and mass, Phys. Rev. 130 (1963) 439 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

  3. C. Becchi, A. Rouet and R. Stora, The Abelian Higgs-Kibble model. Unitarity of the S operator, Phys. Lett. B 52 (1974) 344 [INSPIRE].

  4. H.G.J. Veltman, The equivalence theorem, Phys. Rev. D 41 (1990) 2294 [INSPIRE].

    ADS  Google Scholar 

  5. C. Grosse-Knetter and R. Kögerler, Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians, Phys. Rev. D 48 (1993) 2865 [hep-ph/9212268] [INSPIRE].

  6. H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].

  7. S. Weinzierl, Tales of 1001 gluons, Phys. Rept. 676 (2017) 1 [arXiv:1610.05318] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. C. Itzykson and J.-B. Zuber, Quantum field theory, McGraw-Hill, New York U.S.A., (1980) [INSPIRE].

  9. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading U.S.A., (1995) [INSPIRE].

    Google Scholar 

  10. D. Bailin and A. Love, Introduction to gauge field theory, IOP and Adam Hilger, U.K., (1986) [INSPIRE].

    MATH  Google Scholar 

  11. R. Kleiss, P4 lecture notes “paths, pictures, particles, processes”, Radboud University, Nijmegen The Netherlands, (2017).

  12. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett. 30 (1973) 1268 [Erratum ibid. 31 (1973) 572] [INSPIRE].

  13. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].

  14. E.N. Argyres, C.G. Papadopoulos and R.H.P. Kleiss, On amplitude zeros at threshold, Phys. Lett. B 302 (1993) 70 [hep-ph/9212280] [INSPIRE].

  15. E.N. Argyres, R.H.P. Kleiss and C.G. Papadopoulos, Nullification of multi-Higgs threshold amplitudes in the Standard Model, Phys. Lett. B 308 (1993) 315 [Addendum ibid. B 319 (1993) 544] [hep-ph/9303322] [INSPIRE].

  16. L.S. Brown, Summing tree graphs at threshold, Phys. Rev. D 46 (1992) R4125 [hep-ph/9209203] [INSPIRE].

  17. V.V. Khoze and M. Spannowsky, Higgsplosion: solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons, Nucl. Phys. B 926 (2018) 95 [arXiv:1704.03447] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. H. Elvang, D.Z. Freedman and M. Kiermaier, Proof of the MHV vertex expansion for all tree amplitudes in N = 4 SYM theory, JHEP 06 (2009) 068 [arXiv:0811.3624] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Cohen, H. Elvang and M. Kiermaier, On-shell constructibility of tree amplitudes in general field theories, JHEP 04 (2011) 053 [arXiv:1010.0257] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands

    Ronald Kleiss & Oscar Boher Luna

Authors
  1. Ronald Kleiss
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Oscar Boher Luna
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ronald Kleiss.

Additional information

ArXiv ePrint: 1705.04859

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleiss, R., Luna, O.B. Amplitudes, recursion relations and unitarity in the Abelian Higgs model. J. High Energ. Phys. 2017, 2 (2017). https://doi.org/10.1007/JHEP12(2017)002

Download citation

  • Received: 09 June 2017

  • Revised: 03 November 2017

  • Accepted: 24 November 2017

  • Published: 01 December 2017

  • DOI: https://doi.org/10.1007/JHEP12(2017)002

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Scattering Amplitudes
  • Higgs Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature