Advertisement

Journal of High Energy Physics

, 2016:158 | Cite as

On the strength of the U A (1) anomaly at the chiral phase transition in N f = 2 QCD

  • Bastian B. BrandtEmail author
  • Anthony Francis
  • Harvey B. Meyer
  • Owe Philipsen
  • Daniel Robaina
  • Hartmut Wittig
Open Access
Regular Article - Theoretical Physics

Abstract

We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using O(a)-improved Wilson quarks. Temperature scans are performed at a fixed value of N t = (aT)−1 = 16, where a is the lattice spacing and T the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the O(4) universality class.

Keywords

Global Symmetries Lattice QCD Phase Diagram of QCD Spontaneous Symmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Brambilla et al., QCD and strongly coupled gauge theories: challenges and perspectives, Eur. Phys. J. C 74 (2014) 2981 [arXiv:1404.3723] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    K. Szabo, QCD at non-zero temperature and magnetic field, PoS(LATTICE 2013)014 [arXiv:1401.4192] [INSPIRE].
  3. [3]
    H.-T. Ding, F. Karsch and S. Mukherjee, Thermodynamics of strong-interaction matter from Lattice QCD, Int. J. Mod. Phys. E 24 (2015) 1530007 [arXiv:1504.05274] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Bazavov, Lattice QCD at non-zero temperature, PoS(LATTICE2014)392.
  5. [5]
    H.B. Meyer, QCD at non-zero temperature from the lattice, PoS(LATTICE 2015)014 [arXiv:1512.06634] [INSPIRE].
  6. [6]
    L.G. Yaffe and B. Svetitsky, First order phase transition in the SU(3) gauge theory at finite temperature, Phys. Rev. D 26 (1982) 963 [INSPIRE].ADSGoogle Scholar
  7. [7]
    R.D. Pisarski and F. Wilczek, Remarks on the chiral phase transition in chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].ADSGoogle Scholar
  8. [8]
    Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].
  9. [9]
    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].ADSGoogle Scholar
  10. [10]
    HotQCD collaboration, A. Bazavov et al., The chiral transition and U(1)A symmetry restoration from lattice QCD using domain wall fermions, Phys. Rev. D 86 (2012) 094503 [arXiv:1205.3535] [INSPIRE].
  11. [11]
    T. Bhattacharya et al., QCD phase transition with chiral quarks and physical quark masses, Phys. Rev. Lett. 113 (2014) 082001 [arXiv:1402.5175] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    WHOT-QCD collaboration, T. Umeda et al., Equation of state in 2 + 1 flavor QCD with improved Wilson quarks by the fixed scale approach, Phys. Rev. D 85 (2012) 094508 [arXiv:1202.4719] [INSPIRE].
  13. [13]
    S. Borsányi et al., QCD thermodynamics with continuum extrapolated Wilson fermions I, JHEP 08 (2012) 126 [arXiv:1205.0440] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Borsányi et al., QCD thermodynamics with continuum extrapolated Wilson fermions II, Phys. Rev. D 92 (2015) 014505 [arXiv:1504.03676] [INSPIRE].ADSGoogle Scholar
  15. [15]
    WHOT-QCD collaboration, T. Umeda et al., Towards the QCD equation of state at the physical point using Wilson fermion, PoS(LATTICE 2015)209 [arXiv:1511.04649] [INSPIRE].
  16. [16]
    F. Karsch, E. Laermann and C. Schmidt, The chiral critical point in three-flavor QCD, Phys. Lett. B 520 (2001) 41 [hep-lat/0107020] [INSPIRE].
  17. [17]
    P. de Forcrand and O. Philipsen, The Chiral critical line of N f = 2 + 1 QCD at zero and non-zero baryon density, JHEP 01 (2007) 077 [hep-lat/0607017] [INSPIRE].
  18. [18]
    WHOT-QCD collaboration, H. Saito et al., Phase structure of finite temperature QCD in the heavy quark region, Phys. Rev. D 84 (2011) 054502 [Erratum ibid. D 85 (2012) 079902] [arXiv:1106.0974] [INSPIRE].
  19. [19]
    M. Fromm, J. Langelage, S. Lottini and O. Philipsen, The QCD deconfinement transition for heavy quarks and all baryon chemical potentials, JHEP 01 (2012) 042 [arXiv:1111.4953] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    P. de Forcrand, S. Kim and O. Philipsen, A QCD chiral critical point at small chemical potential: Is it there or not?, PoS(LATTICE 2007)178 [arXiv:0711.0262] [INSPIRE].
  21. [21]
    G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The Nature of the finite temperature QCD transition as a function of the quark masses, PoS(LATTICE 2007)182 [arXiv:0710.0998] [INSPIRE].
  22. [22]
    H.T. Ding, A. Bazavov, P. Hegde, F. Karsch, S. Mukherjee and P. Petreczky, Exploring phase diagram of N f = 3 QCD at μ = 0 with HISQ fermions, PoS(LATTICE 2011)191 [arXiv:1111.0185] [INSPIRE].
  23. [23]
    X.-Y. Jin, Y. Kuramashi, Y. Nakamura, S. Takeda and A. Ukawa, Critical endpoint of the finite temperature phase transition for three flavor QCD, Phys. Rev. D 91 (2015) 014508 [arXiv:1411.7461] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Butti, A. Pelissetto and E. Vicari, On the nature of the finite temperature transition in QCD, JHEP 08 (2003) 029 [hep-ph/0307036] [INSPIRE].
  25. [25]
    A. Pelissetto and E. Vicari, Relevance of the axial anomaly at the finite-temperature chiral transition in QCD, Phys. Rev. D 88 (2013) 105018 [arXiv:1309.5446] [INSPIRE].ADSGoogle Scholar
  26. [26]
    F. Karsch, Scaling of pseudocritical couplings in two flavor QCD, Phys. Rev. D 49 (1994) 3791 [hep-lat/9309022] [INSPIRE].
  27. [27]
    F. Karsch and E. Laermann, Susceptibilities, the specific heat and a cumulant in two flavor QCD, Phys. Rev. D 50 (1994) 6954 [hep-lat/9406008] [INSPIRE].
  28. [28]
    JLQCD collaboration, S. Aoki et al., Scaling study of the two flavor chiral phase transition with the Kogut-Susskind quark action in lattice QCD, Phys. Rev. D 57 (1998) 3910 [hep-lat/9710048] [INSPIRE].
  29. [29]
    MILC collaboration, C.W. Bernard et al., Scaling tests of the improved Kogut-Susskind quark action, Phys. Rev. D 61 (2000) 111502 [hep-lat/9912018] [INSPIRE].
  30. [30]
    M. D’Elia, A. Di Giacomo and C. Pica, Two flavor QCD and confinement, Phys. Rev. D 72 (2005) 114510 [hep-lat/0503030] [INSPIRE].
  31. [31]
    G. Cossu, M. D’Elia, A. Di Giacomo and C. Pica, Two flavor QCD and confinement. II., arXiv:0706.4470 [INSPIRE].
  32. [32]
    C. Bonati, G. Cossu, M. D’Elia, A. Di Giacomo and C. Pica, A test of first order scaling in N f = 2 QCD: a progress report, PoS(LATTICE 2008)204 [arXiv:0901.3231] [INSPIRE].
  33. [33]
    CP-PACS collaboration, A. Ali Khan et al., Phase structure and critical temperature of two flavor QCD with renormalization group improved gauge action and clover improved Wilson quark action, Phys. Rev. D 63 (2001) 034502 [hep-lat/0008011] [INSPIRE].
  34. [34]
    V.G. Bornyakov et al., Probing the finite temperature phase transition with N f = 2 nonperturbatively improved Wilson fermions, Phys. Rev. D 82 (2010) 014504 [arXiv:0910.2392] [INSPIRE].ADSGoogle Scholar
  35. [35]
    V.G. Bornyakov et al., Finite temperature phase transition with two flavors of improved Wilson fermions, PoS(Lattice 2010)170 [arXiv:1102.4461] [INSPIRE].
  36. [36]
    tmfT collaboration, F. Burger et al., Thermal QCD transition with two flavors of twisted mass fermions, Phys. Rev. D 87 (2013) 074508 [arXiv:1102.4530] [INSPIRE].
  37. [37]
    TWQCD collaboration, T.-W. Chiu et al., Chiral symmetry and axial U(1) symmetry in finite temperature QCD with domain-wall fermion, PoS(LATTICE 2013)165 [arXiv:1311.6220] [INSPIRE].
  38. [38]
    G. Cossu et al., Finite temperature study of the axial U(1) symmetry on the lattice with overlap fermion formulation, Phys. Rev. D 87 (2013) 114514 [arXiv:1304.6145] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Tomiya, G. Cossu, H. Fukaya, S. Hashimoto and J. Noaki, Effects of near-zero Dirac eigenmodes on axial U(1) symmetry at finite temperature, PoS(LATTICE2014)211 [arXiv:1412.7306] [INSPIRE].
  40. [40]
    JLQCD collaboration, G. Cossu et al., On the axial U(1) symmetry at finite temperature, PoS(LATTICE 2015)196 [arXiv:1511.05691] [INSPIRE].
  41. [41]
    P. de Forcrand and O. Philipsen, Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential, Phys. Rev. Lett. 105 (2010) 152001 [arXiv:1004.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen and F. Sanfilippo, Chiral phase transition in two-flavor QCD from an imaginary chemical potential, Phys. Rev. D 90 (2014) 074030 [arXiv:1408.5086] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Pinke and O. Philipsen, The N f = 2 chiral phase transition from imaginary chemical potential with Wilson Fermions, PoS(LATTICE 2015)149 [arXiv:1508.07725] [INSPIRE].
  44. [44]
    S. Ejiri and N. Yamada, End point of a first-order phase transition in many-flavor lattice QCD at finite temperature and density, Phys. Rev. Lett. 110 (2013) 172001 [arXiv:1212.5899] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Ejiri, R. Iwami and N. Yamada, Exploring the nature of chiral phase transition in two-flavor QCD using extra heavy quarks, Phys. Rev. D 93 (2016) 054506 [arXiv:1511.06126] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Aoki, H. Fukaya and Y. Taniguchi, 1st or 2nd the order of finite temperature phase transition of N f = 2 QCD from effective theory analysis, PoS(LATTICE 2013)139 [arXiv:1312.1417] [INSPIRE].
  47. [47]
    JLQCD collaboration, S. Aoki, Axial U(1) symmetry in the chiral symmetric phase of 2-flavor QCD at finite temperature, PoS(CD15)045 [arXiv:1603.00997] [INSPIRE].
  48. [48]
    G.V. Dunne and A. Kovner, UA(1) anomaly at high temperature: the scalar-pseudoscalar splitting in QCD, Phys. Rev. D 82 (2010) 065014 [arXiv:1004.1075] [INSPIRE].ADSGoogle Scholar
  49. [49]
    T.D. Cohen, The high temperature phase of QCD and UA(1) symmetry, Phys. Rev. D 54 (1996) R1867 [hep-ph/9601216] [INSPIRE].
  50. [50]
    T.D. Cohen, The Spectral density of the Dirac operator above T c rep, in the proceedings of the APCTP Workshop on astro-hadron physics, October 25–31, Seoul, Korea (1997), nucl-th/9801061 [INSPIRE].
  51. [51]
    N.J. Evans, S.D.H. Hsu and M. Schwetz, Topological charge and UA(1) symmetry in the high temperature phase of QCD, Phys. Lett. B 375 (1996) 262 [hep-ph/9601361] [INSPIRE].
  52. [52]
    S.H. Lee and T. Hatsuda, UA(1) symmetry restoration in QCD with N f flavors, Phys. Rev. D 54 (1996) R1871 [hep-ph/9601373] [INSPIRE].
  53. [53]
    S. Aoki, H. Fukaya and Y. Taniguchi, Chiral symmetry restoration, eigenvalue density of Dirac operator and axial U(1) anomaly at finite temperature, Phys. Rev. D 86 (2012) 114512 [arXiv:1209.2061] [INSPIRE].ADSGoogle Scholar
  54. [54]
    V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S. Sharma, Microscopic origin of U A(1) symmetry violation in the high temperature phase of QCD, Phys. Rev. D 91 (2015) 094504 [arXiv:1502.06190] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M.I. Buchoff et al., QCD chiral transition, UA(1) symmetry and the Dirac spectrum using domain wall fermions, Phys. Rev. D 89 (2014) 054514 [arXiv:1309.4149] [INSPIRE].ADSGoogle Scholar
  56. [56]
    B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with wilson fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  58. [58]
    B.B. Brandt, A. Francis, H.B. Meyer, O. Philipsen and H. Wittig, QCD thermodynamics with O(a) improved Wilson fermions at N f = 2, PoS(LATTICE 2013)162 [arXiv:1310.8326] [INSPIRE].
  59. [59]
    B.B. Brandt, H. Wittig, O. Philipsen and L. Zeidlewicz, Towards the N f = 2 deconfinement transition temperature with O(a) improved Wilson fermions, PoS(LATTICE 2010)172 [arXiv:1008.2143] [INSPIRE].
  60. [60]
    B.B. Brandt, O. Philipsen, H. Wittig and L. Zeidlewicz, Towards the N f = 2 deconfinement transition temperature with O(a) improved Wilson fermions: An update, AIP Conf. Proc. 1343 (2011) 516 [arXiv:1011.6172] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    B.B. Brandt, A. Francis, H.B. Meyer, H. Wittig and O. Philipsen, QCD thermodynamics with two flavours of Wilson fermions on large lattices, PoS(LATTICE 2012)073 [arXiv:1210.6972] [INSPIRE].
  62. [62]
    B.B. Brandt, A. Francis, H.B. Meyer and D. Robaina, Chiral dynamics in the low-temperature phase of QCD, Phys. Rev. D 90 (2014) 054509 [arXiv:1406.5602] [INSPIRE].ADSGoogle Scholar
  63. [63]
    B.B. Brandt, A. Francis, H.B. Meyer and D. Robaina, Chiral dynamics in the low-temperature phase of QCD, PoS(LATTICE2014)234 [arXiv:1410.5981] [INSPIRE].
  64. [64]
    B.B. Brandt, A. Francis, H.B. Meyer and D. Robaina, Pion quasiparticle in the low-temperature phase of QCD, Phys. Rev. D 92 (2015) 094510 [arXiv:1506.05732] [INSPIRE].ADSGoogle Scholar
  65. [65]
    B.B. Brandt, A. Francis, H.B. Meyer and D. Robaina, The pion quasiparticle in the low-temperature phase of QCD, PoS(CD15)061 [arXiv:1509.06241] [INSPIRE].
  66. [66]
    ALPHA collaboration, K. Jansen and R. Sommer, O(α) improvement of lattice QCD with two flavors of Wilson quarks, Nucl. Phys. B 530 (1998) 185 [Erratum ibid. B 643 (2002) 517] [hep-lat/9803017] [INSPIRE].
  67. [67]
    M. Lüscher, Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD, Comput. Phys. Commun. 165 (2005) 199 [hep-lat/0409106] [INSPIRE].
  68. [68]
    M. Lüscher, Deflation acceleration of lattice QCD simulations, JHEP 12 (2007) 011 [arXiv:0710.5417] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    M. Hasenbusch, Speeding up the hybrid Monte Carlo algorithm for dynamical fermions, Phys. Lett. B 519 (2001) 177 [hep-lat/0107019] [INSPIRE].
  70. [70]
    M. Marinkovic and S. Schaefer, Comparison of the mass preconditioned HMC and the DD-HMC algorithm for two-flavour QCD, PoS(LATTICE 2010)031 [arXiv:1011.0911] [INSPIRE].
  71. [71]
    M. Lüscher, Solution of the Dirac equation in lattice QCD using a domain decomposition method, Comput. Phys. Commun. 156 (2004) 209 [hep-lat/0310048] [INSPIRE].
  72. [72]
    M. Lüscher, Local coherence and deflation of the low quark modes in lattice QCD, JHEP 07 (2007) 081 [arXiv:0706.2298] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    B.B. Brandt, A. Francis, B. Jäger and H.B. Meyer, Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors, Phys. Rev. D 93 (2016) 054510 [arXiv:1512.07249] [INSPIRE].ADSGoogle Scholar
  74. [74]
    P. Fritzsch et al., The strange quark mass and Λ parameter of two flavor QCD, Nucl. Phys. B 865 (2012) 397 [arXiv:1205.5380] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  75. [75]
    R. Sommer, A New way to set the energy scale in lattice gauge theories and its applications to the static force and α s in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [INSPIRE].
  76. [76]
    J. Bijnens, G. Colangelo and P. Talavera, The vector and scalar form-factors of the pion to two loops, JHEP 05 (1998) 014 [hep-ph/9805389] [INSPIRE].
  77. [77]
    B.B. Brandt, A. Jüttner and H. Wittig, The pion vector form factor from lattice QCD and NNLO chiral perturbation theory, JHEP 11 (2013) 034 [arXiv:1306.2916] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    H. Wittig, Improved calculational methods for Monte Carlo simulations of the SU(2) Higgs model, Nucl. Phys. B 325 (1989) 242 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    APE collaboration, M. Albanese et al., Glueball masses and string tension in lattice QCD, Phys. Lett. B 192 (1987) 163 [INSPIRE].
  80. [80]
    O. Kaczmarek, F. Karsch, P. Petreczky and F. Zantow, Heavy quark anti-quark free energy and the renormalized Polyakov loop, Phys. Lett. B 543 (2002) 41 [hep-lat/0207002] [INSPIRE].
  81. [81]
    G. Aarts et al., Electrical conductivity and charge diffusion in thermal QCD from the lattice, JHEP 02 (2015) 186 [arXiv:1412.6411] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    L.H. Karsten and J. Smit, Lattice fermions: species doubling, chiral invariance and the triangle anomaly, Nucl. Phys. B 183 (1981) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Bochicchio, L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Chiral symmetry on the lattice with Wilson fermions, Nucl. Phys. B 262 (1985) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    L. Giusti, F. Rapuano, M. Talevi and A. Vladikas, The QCD chiral condensate from the lattice, Nucl. Phys. B 538 (1999) 249 [hep-lat/9807014] [INSPIRE].
  85. [85]
    C.E. Detar and J.B. Kogut, The hadronic spectrum of the quark plasma, Phys. Rev. Lett. 59 (1987) 399 [INSPIRE].
  86. [86]
    C.E. Detar and J.B. Kogut, Measuring the hadronic spectrum of the quark plasma, Phys. Rev. D 36 (1987) 2828 [INSPIRE].ADSGoogle Scholar
  87. [87]
    H.B. Meyer, Transport properties of the quark-gluon plasma: a lattice QCD perspective, Eur. Phys. J. A 47 (2011) 86 [arXiv:1104.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    F. Karsch and E. Laermann, Thermodynamics and in medium hadron properties from lattice QCD, hep-lat/0305025 [INSPIRE].
  89. [89]
    M. Cheng et al., Meson screening masses from lattice QCD with two light and the strange quark, Eur. Phys. J. C 71 (2011) 1564 [arXiv:1010.1216] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    D. Banerjee, R.V. Gavai and S. Gupta, Quasi-static probes of the QCD plasma, Phys. Rev. D 83 (2011) 074510 [arXiv:1102.4465] [INSPIRE].ADSGoogle Scholar
  91. [91]
    V.L. Eletsky and B.L. Ioffe, On temperature dependence of correlators of hadronic currents, Sov. J. Nucl. Phys. 48 (1988) 384 [INSPIRE].Google Scholar
  92. [92]
    W. Florkowski and B.L. Friman, Spatial dependence of the finite temperature meson correlation function, Z. Phys. A 347 (1994) 271 [INSPIRE].ADSGoogle Scholar
  93. [93]
    M. Laine and M. Vepsäläinen, Mesonic correlation lengths in high temperature QCD, JHEP 02 (2004) 004 [hep-ph/0311268] [INSPIRE].
  94. [94]
    W.M. Alberico, A. Beraudo, A. Czerska, P. Czerski and A. Molinari, Meson screening masses in the interacting QCD plasma, Nucl. Phys. A 792 (2007) 152 [hep-ph/0703298] [INSPIRE].
  95. [95]
    B.B. Brandt, A. Francis, M. Laine and H.B. Meyer, A relation between screening masses and real-time rates, JHEP 05 (2014) 117 [arXiv:1404.2404] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    B.B. Brandt, A. Francis, M. Laine and H.B. Meyer, Vector screening masses in the quark-gluon plasma and their physical significance, Nucl. Phys. A 931 (2014) 861 [arXiv:1408.5917] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [INSPIRE].
  98. [98]
    S. Ejiri et al., On the magnetic equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 80 (2009) 094505 [arXiv:0909.5122] [INSPIRE].ADSGoogle Scholar
  99. [99]
    K. Kanaya and S. Kaya, Critical exponents of a three dimensional O(4) spin model, Phys. Rev. D 51 (1995) 2404 [hep-lat/9409001] [INSPIRE].
  100. [100]
    Y. Nakayama, Determining the order of chiral phase transition in QCD from conformal bootstrap, PoS(LATTICE 2015)002.
  101. [101]
    S. Chandrasekharan and A.C. Mehta, Effects of the anomaly on the two-flavor QCD chiral phase transition, Phys. Rev. Lett. 99 (2007) 142004 [arXiv:0705.0617] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    ETM collaboration, K. Jansen, C. Michael and C. Urbach, The eta-prime meson from lattice QCD, Eur. Phys. J. C 58 (2008) 261 [arXiv:0804.3871] [INSPIRE].
  103. [103]
    ETM collaboration, K. Jansen, C. McNeile, C. Michael and C. Urbach, Meson masses and decay constants from unquenched lattice QCD, Phys. Rev. D 80 (2009) 054510 [arXiv:0906.4720] [INSPIRE].
  104. [104]
    B.B. Brandt, A. Francis and H.B. Meyer, Antiscreening of the Ampère force in QED and QCD plasmas, Phys. Rev. D 89 (2014) 034506 [arXiv:1310.5160] [INSPIRE].ADSGoogle Scholar
  105. [105]
    S. Wissel, E. Laermann, S. Shcheredin, S. Datta and F. Karsch, Meson correlation functions at high temperatures, PoS(LAT2005)164 [hep-lat/0510031] [INSPIRE].
  106. [106]
    M. Müller, The thermodynamic and the continuum limit of meson screening masses in quenched lattice QCD, parallel talk at 31st International Symposium on Lattice Field Theory (LATTICE 2013), July 29–August 3, Mainz, Germany (2013).Google Scholar
  107. [107]
    JLQCD collaboration, G. Cossu et al., Axial U(1) symmetry at finite temperature with Möbius domain-wall fermions, PoS(LATTICE2014)210 [arXiv:1412.5703] [INSPIRE].
  108. [108]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  109. [109]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  110. [110]
    tmfT collaboration, F. Burger et al., Equation of state of quark-gluon matter from lattice QCD with two flavors of twisted mass Wilson fermions, Phys. Rev. D 91 (2015) 074504 [arXiv:1412.6748] [INSPIRE].
  111. [111]
    B. Efron, Bootstrap methods: another look at the jacknife, Ann. Statist. 7 (1979) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  112. [112]
    C. Michael, Fitting correlated data, Phys. Rev. D 49 (1994) 2616 [hep-lat/9310026] [INSPIRE].
  113. [113]
    ALPHA collaboration, B. Leder and F. Knechtli, Scale r 0 and the static potential from the CLS lattices, PoS(LATTICE 2010)233 [arXiv:1012.1141] [INSPIRE].
  114. [114]
    ALPHA collaboration, M. Guagnelli, R. Sommer and H. Wittig, Precision computation of a low-energy reference scale in quenched lattice QCD, Nucl. Phys. B 535 (1998) 389 [hep-lat/9806005] [INSPIRE].
  115. [115]
    M. Della Morte, R. Hoffmann, F. Knechtli, R. Sommer and U. Wolff, Non-perturbative renormalization of the axial current with dynamical Wilson fermions, JHEP 07 (2005) 007 [hep-lat/0505026] [INSPIRE].
  116. [116]
    M. Della Morte, R. Hoffmann and R. Sommer, Non-perturbative improvement of the axial current for dynamical Wilson fermions, JHEP 03 (2005) 029 [hep-lat/0503003] [INSPIRE].
  117. [117]
    P. Fritzsch, J. Heitger and N. Tantalo, Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD, JHEP 08 (2010) 074 [arXiv:1004.3978] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  118. [118]
    M. Lüscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and O(a) improvement in lattice QCD, Nucl. Phys. B 478 (1996) 365 [hep-lat/9605038] [INSPIRE].
  119. [119]
    M. Lüscher, S. Sint, R. Sommer, P. Weisz and U. Wolff, Nonperturbative O(a) improvement of lattice QCD, Nucl. Phys. B 491 (1997) 323 [hep-lat/9609035] [INSPIRE].

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Bastian B. Brandt
    • 1
    • 2
    Email author
  • Anthony Francis
    • 3
  • Harvey B. Meyer
    • 4
  • Owe Philipsen
    • 1
  • Daniel Robaina
    • 4
  • Hartmut Wittig
    • 4
  1. 1.Institut für Theoretische PhysikGoethe-UniversitätFrankfurt am MainGermany
  2. 2.Institut für theoretische PhysikUniversität RegensburgRegensburgGermany
  3. 3.Department of Physics & AstronomyYork UniversityTorontoCanada
  4. 4.PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut MainzJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations