Skip to main content

Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future

A preprint version of the article is available at arXiv.

Abstract

We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the traditional fit of electroweak precision observables and extends it to include Higgs-boson measurements. As a result we obtain constraints on new physics corrections to both electroweak observables and Higgs-boson couplings. We present the projected accuracy of the fit taking into account the expected sensitivities at future colliders.

References

  1. HEPfit collaboration, HEPfit: a code for the combination of indirect and direct constraints on high energy physics models, in preparation.

  2. HEPfit collaboration webpage, http://hepfit.roma1.infn.it.

  3. M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].

    ADS  Article  Google Scholar 

  4. J. de Blas et al., Global Bayesian analysis of the Higgs-boson couplings, in International Conference on High Energy Physics 2014 (ICHEP 2014), Valencia Spain July 2-9 2014 [Nucl. Part. Phys. Proc. 273-275 (2016) 834] [arXiv:1410.4204] [INSPIRE].

  5. M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina and L. Silvestrini, Update of the electroweak precision fit, interplay with Higgs-boson signal strengths and model-independent constraints on new physics, in International Conference on High Energy Physics 2014 (ICHEP 2014), Valencia Spain July 2-9 2014 [arXiv:1410.6940] [INSPIRE].

  6. L. Reina et al., Precision constraints on non-standard Higgs-boson couplings with HEPfit, PoS (EPS-HEP2015) 187 [INSPIRE].

  7. J. de Blas et al., Updates on fits to electroweak parameters, in Proceedings of 27th International Symposium on Lepton Photon Interactions at High Energy (LP15), Ljubljana Slovenia August 17-22 2015 [PoS (LeptonPhoton2015) 013] [INSPIRE].

  8. J. de Blas et al., in preparation.

  9. Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].

  10. Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  11. A. Caldwell, D. Kollar and K. Kroninger, BAT: the Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  12. A. Akhundov, A. Arbuzov, S. Riemann and T. Riemann, The ZFITTER project, Phys. Part. Nucl. 45 (2014) 529 [arXiv:1302.1395] [INSPIRE].

    Article  Google Scholar 

  13. H. Burkhardt and B. Pietrzyk, Recent BES measurements and the hadronic contribution to the QED vacuum polarization, Phys. Rev. D 84 (2011) 037502 [arXiv:1106.2991] [INSPIRE].

    ADS  Google Scholar 

  14. SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group and L3 collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

  15. ATLAS, CDF, CMS and D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].

  16. ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].

  17. Tevatron Electroweak Working Group, CDF and D0 collaborations, 2012 update of the combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [INSPIRE].

  18. Tevatron Electroweak Working Group, CDF, DELPHI, SLD Electroweak and Heavy Flavour Groups, ALEPH, LEP Electroweak Working Group, SLD, OPAL, D0 and L3 collaboration, Precision electroweak measurements and constraints on the Standard Model, arXiv:1012.2367 [INSPIRE].

  19. CDF collaboration, T.A. Aaltonen et al., Measurement of sin2 θ lepteff using e + e pairs from γ /Z bosons produced in \( p\overline{p} \) collisions at a center-of-momentum energy of 1.96 TeV, Phys. Rev. D 93 (2016) 112016 [arXiv:1605.02719] [INSPIRE].

  20. CDF collaboration, T.A. Aaltonen et al., Indirect measurement of sin2 θ W (or M W ) using μ + μ pairs from γ /Z bosons produced in pp collisions at a center-of-momentum energy of 1.96 TeV, Phys. Rev. D 89 (2014) 072005 [arXiv:1402.2239] [INSPIRE].

  21. D0 collaboration, V.M. Abazov et al., Measurement of the effective weak mixing angle in \( p\overline{p}\to Z/{\gamma}^{\ast}\to {e}^{+}{e}^{-} \) events, Phys. Rev. Lett. 115 (2015) 041801 [arXiv:1408.5016] [INSPIRE].

  22. ATLAS collaboration, Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2015) 049 [arXiv:1503.03709] [INSPIRE].

  23. CMS collaboration, Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC, Phys. Rev. D 84 (2011) 112002 [arXiv:1110.2682] [INSPIRE].

  24. LHCb collaboration, Measurement of the forward-backward asymmetry in Z/γ μ + μ decays and determination of the effective weak mixing angle, JHEP 11 (2015) 190 [arXiv:1509.07645] [INSPIRE].

  25. A. Freitas, Higher-order electroweak corrections to the partial widths and branching ratios of the Z boson, JHEP 04 (2014) 070 [arXiv:1401.2447] [INSPIRE].

    ADS  Article  Google Scholar 

  26. Y. Schröder and M. Steinhauser, Four-loop singlet contribution to the ρ parameter, Phys. Lett. B 622 (2005) 124 [hep-ph/0504055] [INSPIRE].

  27. K.G. Chetyrkin, M. Faisst, J.H. Kuhn, P. Maierhofer and C. Sturm, Four-loop QCD corrections to the ρ parameter, Phys. Rev. Lett. 97 (2006) 102003 [hep-ph/0605201] [INSPIRE].

  28. R. Boughezal and M. Czakon, Single scale tadpoles and O(G F m 2 t α 3 s ) corrections to the ρ parameter, Nucl. Phys. B 755 (2006) 221 [hep-ph/0606232] [INSPIRE].

  29. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the Standard Model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].

  30. CMS collaboration, Determination of the top-quark pole mass and strong coupling constant from the \( t\overline{t} \) production cross section in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 728 (2014) 496 [Erratum ibid. B 738 (2014) 526] [arXiv:1307.1907] [INSPIRE].

  31. S. Aoki et al., Review of lattice results concerning low-energy particle physics, arXiv:1607.00299 [INSPIRE].

  32. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    ADS  Article  Google Scholar 

  33. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  34. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].

    ADS  Article  Google Scholar 

  35. G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [INSPIRE].

  36. G. Altarelli, R. Barbieri and F. Caravaglios, Nonstandard analysis of electroweak precision data, Nucl. Phys. B 405 (1993) 3 [INSPIRE].

    ADS  Google Scholar 

  37. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

  38. D. Choudhury, T.M.P. Tait and C.E.M. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].

  39. C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].

    ADS  Article  Google Scholar 

  40. D. Ghosh, M. Salvarezza and F. Senia, Extending the analysis of electroweak precision constraints in composite Higgs models, Nucl. Phys. B 914 (2017) 346 [arXiv:1511.08235] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  41. ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112015 [arXiv:1408.7084] [INSPIRE].

  42. CMS collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties, Eur. Phys. J. C 74 (2014) 3076 [arXiv:1407.0558] [INSPIRE].

  43. ATLAS collaboration, Evidence for the Higgs-boson Yukawa coupling to τ leptons with the ATLAS detector, JHEP 04 (2015) 117 [arXiv:1501.04943] [INSPIRE].

  44. CMS collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons, JHEP 05 (2014) 104 [arXiv:1401.5041] [INSPIRE].

  45. ATLAS collaboration, Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012006 [arXiv:1408.5191] [INSPIRE].

  46. CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].

  47. CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the Standard Model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].

  48. ATLAS collaboration, Observation and measurement of Higgs boson decays to W W with the ATLAS detector, Phys. Rev. D 92 (2015) 012006 [arXiv:1412.2641] [INSPIRE].

  49. ATLAS collaboration, Study of (W/Z)H production and Higgs boson couplings using HWW decays with the ATLAS detector, JHEP 08 (2015) 137 [arXiv:1506.06641] [INSPIRE].

  50. CMS collaboration, Measurement of Higgs boson production and properties in the W W decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].

  51. ATLAS collaboration, Search for the bb decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector, JHEP 01 (2015) 069 [arXiv:1409.6212] [INSPIRE].

  52. ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into bb in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 349 [arXiv:1503.05066] [INSPIRE].

  53. CMS collaboration, Search for the Standard Model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks, Phys. Rev. D 89 (2014) 012003 [arXiv:1310.3687] [INSPIRE].

  54. CMS collaboration, Search for the associated production of the Higgs boson with a top-quark pair, JHEP 09 (2014) 087 [Erratum ibid. 10 (2014) 106] [arXiv:1408.1682] [INSPIRE].

  55. CDF collaboration, T. Aaltonen et al., Combination of searches for the Higgs boson using the full CDF data set, Phys. Rev. D 88 (2013) 052013 [arXiv:1301.6668] [INSPIRE].

  56. D0 collaboration, V.M. Abazov et al., Combined search for the Higgs boson with the D0 experiment, Phys. Rev. D 88 (2013) 052011 [arXiv:1303.0823] [INSPIRE].

  57. LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

  58. R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, eHDECAY: an implementation of the Higgs effective Lagrangian into HDECAY, Comput. Phys. Commun. 185 (2014) 3412 [arXiv:1403.3381] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  59. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    ADS  Article  Google Scholar 

  60. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

  61. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 04 (2013) 140] [arXiv:1202.3415] [INSPIRE].

  62. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  63. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

    ADS  Google Scholar 

  64. C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev. D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].

  65. A. Azatov, R. Contino, A. Di Iura and J. Galloway, New prospects for Higgs compositeness in h, Phys. Rev. D 88 (2013) 075019 [arXiv:1308.2676] [INSPIRE].

    ADS  Google Scholar 

  66. A. Pich, I. Rosell and J.J. Sanz-Cillero, Viability of strongly-coupled scenarios with a light Higgs-like boson, Phys. Rev. Lett. 110 (2013) 181801 [arXiv:1212.6769] [INSPIRE].

    ADS  Article  Google Scholar 

  67. A. Pich, I. Rosell and J.J. Sanz-Cillero, Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs, JHEP 01 (2014) 157 [arXiv:1310.3121] [INSPIRE].

    ADS  Article  Google Scholar 

  68. ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

  69. A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].

    ADS  Article  Google Scholar 

  70. J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    ADS  Article  Google Scholar 

  71. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, Eur. Phys. J. C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].

    ADS  Article  Google Scholar 

  72. G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].

    ADS  Google Scholar 

  73. S. Choi, S. Jung and P. Ko, Implications of LHC data on 125 GeV Higgs-like boson for the Standard Model and its various extensions, JHEP 10 (2013) 225 [arXiv:1307.3948] [INSPIRE].

    ADS  Article  Google Scholar 

  74. P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP 11 (2014) 039 [arXiv:1403.1582] [INSPIRE].

    ADS  Article  Google Scholar 

  75. J. Bergstrom and S. Riad, Bayesian model comparison of Higgs couplings, Phys. Rev. D 91 (2015) 075008 [arXiv:1411.4876] [INSPIRE].

    ADS  Google Scholar 

  76. T. Corbett, O.J.P. Eboli, D. Goncalves, J. Gonzalez-Fraile, T. Plehn and M. Rauch, The Higgs legacy of the LHC run I, JHEP 08 (2015) 156 [arXiv:1505.05516] [INSPIRE].

    ADS  Article  Google Scholar 

  77. TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].

  78. T. Barklow et al., ILC operating scenarios, arXiv:1506.07830 [INSPIRE].

  79. K. Fujii et al., Physics case for the International Linear Collider, arXiv:1506.05992 [INSPIRE].

  80. CEPC-SPPC Study Group collaboration, CEPC-SPPC preliminary conceptual design report. 1. Physics and detector, (2015) [INSPIRE].

  81. CEPC-SPPC Study Group collaboration, CEPC-SPPC preliminary conceptual design report. 2. Accelerator, (2015) [INSPIRE].

  82. CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the Snowmass process, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A. July 29-August 6 2013 [arXiv:1307.7135] [INSPIRE].

  83. ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2013-014, CERN, Geneva Switzerland (2013).

  84. ATLAS collaboration, Prospects for the study of the Higgs boson in the V H \( \left(b\overline{b}\right) \) channel at HL-LHC, ATL-PHYS-PUB-2014-011, CERN, Geneva Switzerland (2014).

  85. ATLAS collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016, CERN, Geneva Switzerland (2014).

  86. J. Erler, S. Heinemeyer, W. Hollik, G. Weiglein and P.M. Zerwas, Physics impact of GigaZ, Phys. Lett. B 486 (2000) 125 [hep-ph/0005024] [INSPIRE].

  87. A. Freitas et al., Exploring quantum physics at the ILC, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A. July 29-August 6 2013 [arXiv:1307.3962] [INSPIRE].

  88. J. Fan, M. Reece and L.-T. Wang, Possible futures of electroweak precision: ILC, FCC-ee and CEPC, JHEP 09 (2015) 196 [arXiv:1411.1054] [INSPIRE].

    ADS  Article  Google Scholar 

  89. S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e + e Higgs factory, JHEP 10 (2016) 007 [arXiv:1603.03385] [INSPIRE].

    ADS  Article  Google Scholar 

  90. P. Azzi, Progress in FCC-ee experimental studies, talk given at the FCC Week , Rome Italy (2016).

  91. S. Dawson et al., Working group report: Higgs boson, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A. July 29-August 6 2013 [arXiv:1310.8361] [INSPIRE].

  92. M. Baak et al., Working group report: precision study of electroweak interactions, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A. July 29-August 6 2013 [arXiv:1310.6708] [INSPIRE].

  93. A. Freitas, Electroweak precision tests in the LHC era and Z-decay form factors at two-loop level, in Proceedings, 12th DESY Workshop on Elementary Particle Physics: loops and legs in quantum field theory (LL2014), (2014) [PoS(LL2014)050] [arXiv:1406.6980] [INSPIRE].

  94. A. Freitas, Numerical multi-loop integrals and applications, Prog. Part. Nucl. Phys. 90 (2016) 201 [arXiv:1604.00406] [INSPIRE].

    ADS  Article  Google Scholar 

  95. D.M. Asner et al., Physics at BES-III, Int. J. Mod. Phys. A 24 (2009) S1 [arXiv:0809.1869] [INSPIRE].

    Google Scholar 

  96. V. Lubicz, private communication.

  97. A. Andreazza et al., What next: white paper of the INFN-CSN1, Frascati Phys. Ser. 60 (2015) 1 [INSPIRE].

    Google Scholar 

  98. M. Beneke, A quark mass definition adequate for threshold problems, Phys. Lett. B 434 (1998) 115 [hep-ph/9804241] [INSPIRE].

  99. A.H. Hoang and T. Teubner, Top quark pair production close to threshold: top mass, width and momentum distribution, Phys. Rev. D 60 (1999) 114027 [hep-ph/9904468] [INSPIRE].

  100. M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser, Next-to-next-to-next-to-leading order QCD prediction for the top antitop S-wave pair production cross section near threshold in e + e annihilation, Phys. Rev. Lett. 115 (2015) 192001 [arXiv:1506.06864] [INSPIRE].

    ADS  Article  Google Scholar 

  101. M. Beneke, A. Maier, J. Piclum and T. Rauh, Higgs effects in top anti-top production near threshold in e + e annihilation, Nucl. Phys. B 899 (2015) 180 [arXiv:1506.06865] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  102. P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].

    ADS  Article  Google Scholar 

  103. J. de Blas et al., Electroweak precision constraints at present and future colliders, arXiv:1611.05354 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Reina.

Additional information

ArXiv ePrint: 1608.01509

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Blas, J., Ciuchini, M., Franco, E. et al. Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future. J. High Energ. Phys. 2016, 135 (2016). https://doi.org/10.1007/JHEP12(2016)135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2016)135

Keywords

  • Higgs Physics
  • Beyond Standard Model
  • Quark Masses and SM Parameters
  • Perturbative QCD