Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Invariants for minimal conformal supergravity in six dimensions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 15 December 2016
  • Volume 2016, article number 72, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Invariants for minimal conformal supergravity in six dimensions
Download PDF
  • Daniel Butter1,
  • Sergei M. Kuzenko2,
  • Joseph Novak3 &
  • …
  • Stefan Theisen3 
  • 335 Accesses

  • 34 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We develop a new off-shell formulation for six-dimensional conformal super-gravity obtained by gauging the 6D \( \mathcal{N} \) = (1, 0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D \( \mathcal{N} \) = (1, 0) conformal super-gravity, which contain C 3 and C□C terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric F□F invariant in curved superspace.

Article PDF

Download to read the full article text

Similar content being viewed by others

The component structure of conformal supergravity invariants in six dimensions

Article Open access 24 May 2017

Conformal supergravity in five dimensions: new approach and applications

Article Open access 17 February 2015

\( \mathcal{N} \) = 2 conformal supergravity in five dimensions

Article Open access 03 July 2024
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].

    Article  ADS  Google Scholar 

  2. E.A. Ivanov, A.V. Smilga and B.M. Zupnik, Renormalizable supersymmetric gauge theory in six dimensions, Nucl. Phys. B 726 (2005) 131 [hep-th/0505082] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].

  6. A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. E. Witten, Five-branes and M-theory on an orbifold, Nucl. Phys. B 463 (1996) 383 [hep-th/9512219] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. J.D. Blum and K.A. Intriligator, New phases of string theory and 6d RG fixed points via branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199 [hep-th/9705044] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 1506 (2015) 017] [arXiv:1312.5746] [INSPIRE].

  12. M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  13. J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. L. Bonora, P. Pasti and M. Tonin, Cohomologies and Anomalies in Supersymmetric Theories, Nucl. Phys. B 252 (1985) 458 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. I.L. Buchbinder and S.M. Kuzenko, Matter Superfields in External Supergravity: Green Functions, Effective Action and Superconformal Anomalies, Nucl. Phys. B 274 (1986) 653 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. S.M. Kuzenko, Super-Weyl anomalies in N = 2 supergravity and (non)local effective actions, JHEP 10 (2013) 151 [arXiv:1307.7586] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP 11 (2016) 135 [arXiv:1602.01217] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Louis and S. Lüst, Supersymmetric AdS 7 backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP 10 (2015) 120 [arXiv:1506.08040] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies, JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. P. Yi, Anomaly of (2,0) theories, Phys. Rev. D 64 (2001) 106006 [hep-th/0106165] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].

  27. C. Cordova, T.T. Dumitrescu and X. Yin, Higher Derivative Terms, Toroidal Compactification and Weyl Anomalies in Six-Dimensional (2, 0) Theories, arXiv:1505.03850 [INSPIRE].

  28. E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal Tensor Calculus and Matter Couplings in Six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].

  30. B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation Rules of N = 2 Supergravity Multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. M. de Roo, J.W. van Holten, B. de Wit and A. Van Proeyen, Chiral Superfields in N = 2 Supergravity, Nucl. Phys. B 173 (1980) 175 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [INSPIRE].

  33. B. de Wit, R. Philippe and A. Van Proeyen, The Improved Tensor Multiplet in N = 2 Supergravity, Nucl. Phys. B 219 (1983) 143 [INSPIRE].

    Article  ADS  Google Scholar 

  34. B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su and A. Van Proeyen, Gauge and Matter Fields Coupled to N = 2 Supergravity, Phys. Lett. B 134 (1984) 37 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity-Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  36. D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012).

    Book  MATH  Google Scholar 

  37. E. Bergshoeff, A. Salam and E. Sezgin, A Supersymmetric R 2 Action in Six-dimensions and Torsion, Phys. Lett. B 173 (1986) 73 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. E. Bergshoeff, A. Salam and E. Sezgin, Supersymmetric R 2 Actions, Conformal Invariance and Lorentz Chern-Simons Term in Six-dimensions and Ten-dimensions, Nucl. Phys. B 279 (1987) 659 [INSPIRE].

    Article  ADS  Google Scholar 

  39. E. Bergshoeff and M. Rakowski, An Off-shell Superspace R 2 Action in Six-dimensions, Phys. Lett. B 191 (1987) 399 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Coomans and A. Van Proeyen, Off-shell N = (1, 0), D = 6 supergravity from superconformal methods, JHEP 02 (2011) 049 [Erratum ibid. 1201 (2012) 119] [arXiv:1101.2403] [INSPIRE].

  41. E. Bergshoeff, F. Coomans, E. Sezgin and A. Van Proeyen, Higher Derivative Extension of 6D Chiral Gauged Supergravity, JHEP 07 (2012) 011 [arXiv:1203.2975] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B 505 (1997) 497 [hep-th/9703075] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. S. Ferrara, F. Riccioni and A. Sagnotti, Tensor and vector multiplets in six-dimensional supergravity, Nucl. Phys. B 519 (1998) 115 [hep-th/9711059] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. Salam and E. Sezgin, Chiral Compactification on Minkowski ×S 2 of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. H. Nishino and E. Sezgin, Matter and Gauge Couplings of N = 2 Supergravity in Six-Dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Van Proeyen, Superconformal symmetry and higher-derivative Lagrangians, Springer Proc. Phys. 153 (2014) 1 [arXiv:1306.2169] [INSPIRE].

    Article  Google Scholar 

  47. P.S. Howe, A superspace approach to extended conformal supergravity, Phys. Lett. B 100 (1981) 389 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. P.S. Howe, Supergravity in Superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, JHEP 04 (2008) 032 [arXiv:0802.3953] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. W.D. Linch, III and G. Tartaglino-Mazzucchelli, Six-dimensional Supergravity and Projective Superfields, JHEP 08 (2012) 075 [arXiv:1204.4195] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. D. Butter, N = 1 Conformal Superspace in Four Dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. D. Butter, N = 2 Conformal Superspace in Four Dimensions, JHEP 10 (2011) 030 [arXiv:1103.5914] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: New off-shell formulation, JHEP 09 (2013) 072 [arXiv:1305.3132] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: New approach and applications, JHEP 02 (2015) 111 [arXiv:1410.8682] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Conformal invariance In harmonic superspace, in I.A. Batalin et al. eds., Quantum Field Theory and Quantum Statistics, Vol. 2, pg. 233-248, and Dubna JINR-E-2-85-363 (1985).

  58. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E. Sokatchev, N = 2 Supergravity in Superspace: Different Versions and Matter Couplings, Class. Quant. Grav. 4 (1987) 1255.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. J.A. Bagger, A.S. Galperin, E.A. Ivanov and V.I. Ogievetsky, Gauging N = 2σ Models in Harmonic Superspace, Nucl. Phys. B 303 (1988) 522 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic Superspace, Cambridge University Press, Cambridge, U.K. (2001).

    Book  MATH  Google Scholar 

  61. A.S. Galperin, N.A. Ky and E. Sokatchev, N = 2 supergravity in superspace: solution to the constraints and the invariant action, Class. Quant. Grav. 4 (1987) 1235.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. D. Butter, On conformal supergravity and harmonic superspace, JHEP 03 (2016) 107 [arXiv:1508.07718] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, 5D Supergravity and Projective Superspace, JHEP 02 (2008) 004 [arXiv:0712.3102] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. S.M. Kuzenko, On compactified harmonic/projective superspace, 5 − D superconformal theories and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. S.M. Kuzenko, On superconformal projective hypermultiplets, JHEP 12 (2007) 010 [arXiv:0710.1479] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. A. Karlhede, U. Lindström and M. Roček, Selfinteracting Tensor Multiplets in N = 2 Superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].

    Article  ADS  Google Scholar 

  67. U. Lindström and M. Roček, New HyperKähler Metrics and New Supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. U. Lindström and M. Roček, N = 2 Super Yang-Mills Theory in Projective Superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D N = 2 Supergravity and Projective Superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace, JHEP 08 (2009) 023 [arXiv:0905.0063] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. J. Grundberg and U. Lindström, Actions for linear multiplets in six dimensions, Class. Quant. Grav. 2 (1985) L33.

    Article  ADS  MathSciNet  Google Scholar 

  72. D. Butter and J. Novak, Component reduction in N = 2 supergravity: the vector, tensor and vector-tensor multiplets, JHEP 05 (2012) 115 [arXiv:1201.5431] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. D. Butter, Projective multiplets and hyperkähler cones in conformal supergravity, JHEP 06 (2015) 161 [arXiv:1410.3604] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: Off-shell actions, JHEP 10 (2013) 073 [arXiv:1306.1205] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, N=6 superconformal gravity in three dimensions from superspace, JHEP 01 (2014) 121 [arXiv:1308.5552] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. D. Butter, B. de Wit, S.M. Kuzenko and I. Lodato, New higher-derivative invariants in N = 2 supergravity and the Gauss-Bonnet term, JHEP 12 (2013) 062 [arXiv:1307.6546] [INSPIRE].

  77. M. Müller, Consistent Classical Supergravity Theories, Lect. Notes Phys. 336 (1989).

  78. S.M. Kuzenko, On N = 2 supergravity and projective superspace: Dual formulations, Nucl. Phys. B 810 (2009) 135 [arXiv:0807.3381] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Different representations for the action principle in 4D N = 2 supergravity, JHEP 04 (2009) 007 [arXiv:0812.3464] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. E. Sokatchev, Off-shell six-dimensional supergravity in harmonic superspace, Class. Quant. Grav. 5 (1988) 1459.

    Article  ADS  MathSciNet  Google Scholar 

  81. L. Bonora, P. Pasti and M. Bregola, Weyl cocycles, Class. Quant. Grav. 3 (1986) 635.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. D.R. Karakhanian, R.P. Manvelyan and R.L. Mkrtchian, Trace anomalies and cocycles of Weyl and diffeomorphism groups, Mod. Phys. Lett. A 11 (1996) 409 [hep-th/9411068] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  83. V. Wünsch, Some new conformal covariants, J. Anal. Appl. 19 (2000) 339.

    MathSciNet  MATH  Google Scholar 

  84. J.-H. Park, Superconformal symmetry in six-dimensions and its reduction to four-dimensions, Nucl. Phys. B 539 (1999) 599 [hep-th/9807186] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. W. Siegel, Superfields in Higher Dimensional Space-time, Phys. Lett. B 80 (1979) 220 [INSPIRE].

    Article  ADS  Google Scholar 

  86. B.E.W. Nilsson, Superspace Action for a Six-dimensional Nonextended Supersymmetric Yang-Mills Theory, Nucl. Phys. B 174 (1980) 335 [INSPIRE].

    Article  ADS  Google Scholar 

  87. J. Wess, Supersymmetric gauge theories, in proceedings of the 5th Johns Hopkins Workshop on Current Problems in Particle Theory: Unified Field Theories and Beyond, Baltimore, Maryland U.S.A., 25-27 May 1981, http://ccdb5fs.kek.jp/cgi-bin/img index?198109099.

  88. P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in Six-Dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  89. S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Higher derivative couplings and massive supergravity in three dimensions, JHEP 09 (2015) 081 [arXiv:1506.09063] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  90. P.S. Howe, K.S. Stelle and P.C. West, N = 1, d = 6 harmonic superspace, Class. Quant. Grav. 2 (1985) 815.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. B.M. Zupnik, Six-dimensional Supergauge Theories in the Harmonic Superspace, Sov. J. Nucl. Phys. 44 (1986) 512 [Yad. Fiz. 44 (1986) 794] [INSPIRE].

  92. A.S. Galperin, E.A. Ivanov, S.N. Kalitzin, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469.

    Article  ADS  MathSciNet  Google Scholar 

  93. C. Arias, W.D. Linch, III and A.K. Ridgway, Superforms in six-dimensional superspace, JHEP 05 (2016) 016 [arXiv:1402.4823] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  94. M.F. Sohnius, K.S. Stelle and P.C. West, Representations of extended supersymmetry, in Superspace and Supergravity, S. W. Hawking and M. Roček eds., Cambridge University Press, Cambridge, U.K. (1981).

  95. M.F. Hasler, The three form multiplet in N = 2 superspace, Eur. Phys. J. C 1 (1998) 729 [hep-th/9606076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  96. S.J. Gates, Jr., Ectoplasm has no topology: The prelude, hep-th/9709104 [INSPIRE].

  97. S.J. Gates, Jr., M.T. Grisaru, M.E. Knutt-Wehlau and W. Siegel, Component actions from curved superspace: Normal coordinates and ectoplasm, Phys. Lett. B 421 (1998) 203 [hep-th/9711151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  98. L. Castellani, R. D’Auria and P. Fre, Supergravity and superstrings: A geometric perspective. Vol. 2: Supergravity, World Scientific, Singapore, (1991), pp. 680-684.

  99. P.S. Howe and E. Sezgin, Anomaly free tensor Yang-Mills system and its dual formulation, Phys. Lett. B 440 (1998) 50 [hep-th/9806050] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  100. S.M. Kuzenko, J. Novak and I.B. Samsonov, The anomalous current multiplet in 6D minimal supersymmetry, JHEP 02 (2016) 132 [arXiv:1511.06582] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  101. S.J. Gates, Jr., S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Chiral supergravity actions and superforms, Phys. Rev. D 80 (2009) 125015 [arXiv:0909.3918] [INSPIRE].

    ADS  Google Scholar 

  102. M. Müller, Off-shell supergravity actions, Preprint MPI-PAE/PTh 64/89, Munich, Germaby (1989).

  103. D. Butter, S.M. Kuzenko and J. Novak, The linear multiplet and ectoplasm, JHEP 09 (2012) 131 [arXiv:1205.6981] [INSPIRE].

    Article  ADS  Google Scholar 

  104. S.M. Kuzenko and J. Novak, On supersymmetric Chern-Simons-type theories in five dimensions, JHEP 02 (2014) 096 [arXiv:1309.6803] [INSPIRE].

    Article  ADS  Google Scholar 

  105. S.M. Kuzenko and J. Novak, Supergravity-matter actions in three dimensions and Chern-Simons terms, JHEP 05 (2014) 093 [arXiv:1401.2307] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. D. Butter, New approach to curved projective superspace, Phys. Rev. D 92 (2015) 085004 [arXiv:1406.6235] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  107. D. Butter, On conformal supergravity and harmonic superspace, JHEP 03 (2016) 107 [arXiv:1508.07718] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  108. J. Novak, Superform formulation for vector-tensor multiplets in conformal supergravity, JHEP 09 (2012) 060 [arXiv:1205.6881] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  109. J. Novak, Variant vector-tensor multiplets in supergravity: Classification and component reduction, JHEP 03 (2013) 053 [arXiv:1210.8325] [INSPIRE].

    Article  ADS  Google Scholar 

  110. M. Beccaria and A.A. Tseytlin, Conformal anomaly c-coefficients of superconformal 6d theories, JHEP 01 (2016) 001 [arXiv:1510.02685] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  111. D. Butter, J. Novak and G. Tartaglino-Mazzucchelli, to appear.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Nikhef Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Daniel Butter

  2. School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, W.A., 6009, Australia

    Sergei M. Kuzenko

  3. Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476, Golm, Germany

    Joseph Novak & Stefan Theisen

Authors
  1. Daniel Butter
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sergei M. Kuzenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Joseph Novak
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Stefan Theisen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Joseph Novak.

Additional information

ArXiv ePrint: 1606.02921

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butter, D., Kuzenko, S.M., Novak, J. et al. Invariants for minimal conformal supergravity in six dimensions. J. High Energ. Phys. 2016, 72 (2016). https://doi.org/10.1007/JHEP12(2016)072

Download citation

  • Received: 29 July 2016

  • Revised: 03 October 2016

  • Accepted: 29 November 2016

  • Published: 15 December 2016

  • DOI: https://doi.org/10.1007/JHEP12(2016)072

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • Supergravity Models
  • Superspaces
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature