Advertisement

Journal of High Energy Physics

, 2016:52 | Cite as

Global effective-field-theory analysis of new-physics effects in (semi)leptonic kaon decays

  • Martín González-Alonso
  • Jorge Martin CamalichEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We analyze the decays Kπℓν and Pℓν (P = K, π, = e, μ) using a low-energy Effective-Field-Theory approach to parametrize New Physics and study the complementarity with baryon β decays. We then provide a road map for a global analysis of the experimental data, with all the Wilson coefficients simultaneously, and perform a fit leading to numerical bounds for them and for V us . A prominent result of our analysis is a reinterpretation of the well-known V ud V us diagram as a strong constraint on new physics. Finally, we reinterpret our bounds in terms of the SU(2) L × U(1) Y -invariant operators, provide bounds to the corresponding Wilson coefficients at the TeV scale and compare our results with collider searches at the LHC.

Keywords

Beyond Standard Model Effective field theories Kaon Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the standard model with leptonic and semileptonic kaon decays, arXiv:0801.1817 [INSPIRE].
  2. [2]
    FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., An evaluation of |V us| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].
  3. [3]
    V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon decays in the standard model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  5. [5]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.L. Rosner, S. Stone and R.S. Van de Water, Leptonic Decays of Charged Pseudoscalar Mesons — 2015, submitted to Particle Data Book (2015), arXiv:1509.02220 [INSPIRE].
  7. [7]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Gasser and H. Leutwyler, Low-energy expansion of meson form-factors, Nucl. Phys. B 250 (1985) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    V. Cirigliano, M. Knecht, H. Neufeld, H. Rupertsberger and P. Talavera, Radiative corrections to K(l3) decays, Eur. Phys. J. C 23 (2002) 121 [hep-ph/0110153] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Bijnens and P. Talavera, K(l3) decays in chiral perturbation theory, Nucl. Phys. B 669 (2003) 341 [hep-ph/0303103] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Jamin, J.A. Oller and A. Pich, Strangeness changing scalar form-factors, Nucl. Phys. B 622 (2002) 279 [hep-ph/0110193] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. Ananthanarayan and B. Moussallam, Four-point correlator constraints on electromagnetic chiral parameters and resonance effective Lagrangians, JHEP 06 (2004) 047 [hep-ph/0405206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Jamin, J.A. Oller and A. Pich, Order p 6 chiral couplings from the scalar Kπ form-factor, JHEP 02 (2004) 047 [hep-ph/0401080] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    V. Cirigliano, G. Ecker, M. Eidemuller, R. Kaiser, A. Pich and J. Portoles, The < SPP > Green function and SU(3) breaking in K(l3) decays, JHEP 04 (2005) 006 [hep-ph/0503108] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Descotes-Genon and B. Moussallam, Radiative corrections in weak semi-leptonic processes at low energy: a two-step matching determination, Eur. Phys. J. C 42 (2005) 403 [hep-ph/0505077] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    V. Cirigliano and I. Rosell, Two-loop effective theory analysis of \( \pi (K)\to e{\overline{\nu}}_e\gamma \) branching ratios, Phys. Rev. Lett. 99 (2007) 231801 [arXiv:0707.3439] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    V. Cirigliano and I. Rosell, \( \pi /K-\to e{\overline{nu}}_e \) branching ratios to O(e 2 p 4) in chiral perturbation theory, JHEP 10 (2007) 005 [arXiv:0707.4464] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Kastner and H. Neufeld, The K(l3) scalar form factors in the standard model, Eur. Phys. J. C 57 (2008) 541 [arXiv:0805.2222] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    V. Cirigliano, M. Giannotti and H. Neufeld, Electromagnetic effects in K(l3) decays, JHEP 11 (2008) 006 [arXiv:0807.4507] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    V. Bernard, M. Oertel, E. Passemar and J. Stern, Dispersive representation and shape of the K(l3) form factors: robustness, Phys. Rev. D 80 (2009) 034034 [arXiv:0903.1654] [INSPIRE].ADSGoogle Scholar
  21. [21]
    V. Cirigliano and H. Neufeld, A note on isospin violation in Pl2(γ) decays, Phys. Lett. B 700 (2011) 7 [arXiv:1102.0563] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  23. [23]
    BaBar collaboration, J.P. Lees et al., Measurement of an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  24. [24]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  25. [25]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{v}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [arXiv:1506.08614] [INSPIRE].
  26. [26]
    Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  27. [27]
    LHCb collaboration, Angular analysis of the B 0K *0 μ + μ decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  28. [28]
    Belle collaboration, A. Abdesselam et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, arXiv:1603.06711 [INSPIRE].
  29. [29]
    Belle collaboration, A. Abdesselam et al., Angular analysis of B 0K *(892)0 + , arXiv:1604.04042 [INSPIRE].
  30. [30]
    A.J. Buras, M. Gorbahn, S. Jäger and M. Jamin, Improved anatomy of ϵ/ϵ in the standard model, JHEP 11 (2015) 202 [arXiv:1507.06345] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Masiero, P. Paradisi and R. Petronzio, Probing new physics through μ-e universality in K, Phys. Rev. D 74 (2006) 011701 [hep-ph/0511289] [INSPIRE].ADSGoogle Scholar
  32. [32]
    V. Bernard, M. Oertel, E. Passemar and J. Stern, K(μ3)L decay: a stringent test of right-handed quark currents, Phys. Lett. B 638 (2006) 480 [hep-ph/0603202] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V. Bernard, M. Oertel, E. Passemar and J. Stern, Tests of non-standard electroweak couplings of right-handed quarks, JHEP 01 (2008) 015 [arXiv:0707.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    B.A. Campbell and A. Ismail, Leptonic pion decay and physics beyond the electroweak standard model, arXiv:0810.4918 [INSPIRE].
  35. [35]
    M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    S. Bauman, J. Erler and M. Ramsey-Musolf, Charged current universality and the MSSM, Phys. Rev. D 87 (2013) 035012 [arXiv:1204.0035] [INSPIRE].ADSGoogle Scholar
  38. [38]
    V. Cirigliano, J. Jenkins and M. Gonzalez-Alonso, Semileptonic decays of light quarks beyond the Standard Model, Nucl. Phys. B 830 (2010) 95 [arXiv:0908.1754] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    N. Severijns, M. Beck and O. Naviliat-Cuncic, Tests of the standard electroweak model in β decay, Rev. Mod. Phys. 78 (2006) 991 [nucl-ex/0605029] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. Wauters, A. García and R. Hong, Limits on tensor-type weak currents from nuclear and neutron β decays, Phys. Rev. C 89 (2014) 025501 [arXiv:1306.2608] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R.W. Pattie, K.P. Hickerson and A.R. Young, Limits on tensor coupling from neutron β-decay, Phys. Rev. C 88 (2013) 048501 [arXiv:1309.2499] [INSPIRE].ADSGoogle Scholar
  42. [42]
    W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Moulson, Experimental determination of V us from kaon decays, talk given at 8th International Workshop on the CKM Unitarity Triangle (CKM2014), September 8–12, Vienna, Austria (2014), arXiv:1411.5252 [INSPIRE].
  44. [44]
    R. Alonso, B. Grinstein and J. Martin Camalich, SU(2) × U(1) gauge invariance and the shape of new physics in rare B decays, Phys. Rev. Lett. 113 (2014) 241802 [arXiv:1407.7044] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for bs and bc transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Bhattacharya et al., Probing novel scalar and tensor interactions from (ultra)cold neutrons to the LHC, Phys. Rev. D 85 (2012) 054512 [arXiv:1110.6448] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Sirlin, Large m(W), m(Z) behavior of the O(α) corrections to semileptonic processes mediated by W , Nucl. Phys. B 196 (1982) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    W.J. Marciano and A. Sirlin, Radiative corrections to π(l2) decays, Phys. Rev. Lett. 71 (1993) 3629 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M.B. Voloshin, Upper bound on tensor interaction in the decay \( {\pi}^{-}\to {e}^{-}\overline{\nu}\gamma \), Phys. Lett. B 283 (1992) 120 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P. Herczeg, On the question of a tensor interaction in πe electron-neutrino γ decay, Phys. Rev. D 49 (1994) 247 [INSPIRE].ADSGoogle Scholar
  52. [52]
    B.A. Campbell and D.W. Maybury, Constraints on scalar couplings from π ±l ± ν(l), Nucl. Phys. B 709 (2005) 419 [hep-ph/0303046] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Gonzalez-Alonso, A. Greljo, G. Isidori and D. Marzocca, Pseudo-observables in Higgs decays, Eur. Phys. J. C 75 (2015) 128 [arXiv:1412.6038] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Finkemeier, Radiative corrections to π(l2) and K(l2) decays, Phys. Lett. B 387 (1996) 391 [hep-ph/9505434] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    V.N. Bolotov et al., The experimental study of the \( {\pi}^{-}\to {e}^{-}\overline{\nu}\gamma \) decay in flight, Phys. Lett. B 243 (1990) 308 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Bychkov et al., New precise measurement of the pion weak form factors in π +e + νγ decay, Phys. Rev. Lett. 103 (2009) 051802 [arXiv:0804.1815] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    KLOE collaboration, F. Ambrosino et al., Precise measurement of Γ(K(γ))/Γ(Kμν(γ)) and study of Keνγ, Eur. Phys. J. C 64 (2009) 627 [Erratum ibid. 65 (2010) 703] [arXiv:0907.3594] [INSPIRE].
  59. [59]
    J. Bijnens, G. Ecker and J. Gasser, Radiative semileptonic kaon decays, Nucl. Phys. B 396 (1993) 81 [hep-ph/9209261] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A.A. Poblaguev, On the πe neutrino γ decay sensitivity to a tensor coupling in the effective quark lepton interaction, Phys. Lett. B 238 (1990) 108 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M.V. Chizhov, Search for tensor interactions in kaon decays at DAPHNE, Phys. Lett. B 381 (1996) 359 [hep-ph/9511287] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    V. Mateu and J. Portoles, Form-factors in radiative pion decay, Eur. Phys. J. C 52 (2007) 325 [arXiv:0706.1039] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    O.P. Yushchenko et al., High statistic study of the K π 0 μ ν decay, Phys. Lett. B 581 (2004) 31 [hep-ex/0312004] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    O.P. Yushchenko et al., High statistic measurement of the K π 0 e ν decay form-factors, Phys. Lett. B 589 (2004) 111 [hep-ex/0404030] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    NA48 collaboration, A. Lai et al., Measurement of K 0(e3) form-factors, Phys. Lett. B 604 (2004) 1 [hep-ex/0410065] [INSPIRE].
  66. [66]
    KTeV collaboration, T. Alexopoulos et al., Measurements of semileptonic K(L) decay form-factors, Phys. Rev. D 70 (2004) 092007 [hep-ex/0406003] [INSPIRE].
  67. [67]
    KLOE collaboration, F. Ambrosino et al., Measurement of the form-factor slopes for the decay K(L) → π ± e ν with the KLOE detector, Phys. Lett. B 636 (2006) 166 [hep-ex/0601038] [INSPIRE].
  68. [68]
    KLOE collaboration, F. Ambrosino et al., Measurement of the K(L) → πμν form-factor parameters with the KLOE detector, JHEP 12 (2007) 105 [arXiv:0710.4470] [INSPIRE].
  69. [69]
    NA48 collaboration, A. Lai et al., Measurement of K 0(μ3) form factors, Phys. Lett. B 647 (2007) 341 [hep-ex/0703002] [INSPIRE].
  70. [70]
    KTeV collaboration, E. Abouzaid et al., Dispersive analysis of K(3) and K(le3) scalar and vector form factors using KTeV data, Phys. Rev. D 81 (2010) 052001 [arXiv:0912.1291] [INSPIRE].
  71. [71]
    C.G. Callan and S.B. Treiman, Equal time commutators and K meson decays, Phys. Rev. Lett. 16 (1966) 153 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    J. Bijnens and K. Ghorbani, Isospin breaking in Kπ vector form-factors for the weak and rare decays K(l3), \( K\to \pi \nu \overline{\nu} \) and Kπℓ + , arXiv:0711.0148 [INSPIRE].
  73. [73]
    N. Carrasco, P. Lami, V. Lubicz, L. Riggio, S. Simula and C. Tarantino, Kπ semileptonic form factors with N f = 2 + 1 + 1 twisted mass fermions, Phys. Rev. D 93 (2016) 114512 [arXiv:1602.04113] [INSPIRE].ADSGoogle Scholar
  74. [74]
    J.C. Hardy and I.S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2014 critical survey, with precise results for V ud and CKM unitarity, Phys. Rev. C 91 (2015) 025501 [arXiv:1411.5987] [INSPIRE].ADSGoogle Scholar
  75. [75]
    S. Weinberg, Charge symmetry of weak interactions, Phys. Rev. 112 (1958) 1375 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    H.-M. Chang, M. González-Alonso and J. Martin Camalich, Nonstandard semileptonic hyperon decays, Phys. Rev. Lett. 114 (2015) 161802 [arXiv:1412.8484] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    N. Cabibbo, E.C. Swallow and R. Winston, Semileptonic hyperon decays and CKM unitarity, Phys. Rev. Lett. 92 (2004) 251803 [hep-ph/0307214] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    V. Mateu and A. Pich, V(us) determination from hyperon semileptonic decays, JHEP 10 (2005) 041 [hep-ph/0509045] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S. Sasaki, Hyperon vector form factor from 2 + 1 flavor lattice QCD, Phys. Rev. D 86 (2012) 114502 [arXiv:1209.6115] [INSPIRE].ADSGoogle Scholar
  80. [80]
    L.-S. Geng, K.-W. Li and J. Martin Camalich, Chiral extrapolation and finite-volume dependence of the hyperon vector couplings, Phys. Rev. D 89 (2014) 113007 [arXiv:1402.7133] [INSPIRE].ADSGoogle Scholar
  81. [81]
    P.E. Shanahan et al., SU(3) breaking in hyperon transition vector form factors, Phys. Rev. D 92 (2015) 074029 [arXiv:1508.06923] [INSPIRE].ADSGoogle Scholar
  82. [82]
    D. Mund et al., Determination of the weak axial vector coupling from a measurement of the β-asymmetry parameter a in neutron β decay, Phys. Rev. Lett. 110 (2013) 172502 [arXiv:1204.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    UCNA collaboration, M.P. Mendenhall et al., Precision measurement of the neutron β-decay asymmetry, Phys. Rev. C 87 (2013) 032501 [arXiv:1210.7048] [INSPIRE].
  84. [84]
    J. Green, Hadron structure from lattice QCD, AIP Conf. Proc. 1701 (2016) 040007 [arXiv:1412.4637] [INSPIRE].CrossRefGoogle Scholar
  85. [85]
    R. Horsley et al., Nucleon axial charge and pion decay constant from two-flavor lattice QCD, Phys. Lett. B 732 (2014) 41 [arXiv:1302.2233] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    G.S. Bali et al., Nucleon isovector couplings from N f = 2 lattice QCD, Phys. Rev. D 91 (2015) 054501 [arXiv:1412.7336] [INSPIRE].ADSGoogle Scholar
  87. [87]
    A. Abdel-Rehim et al., Nucleon and pion structure with lattice QCD simulations at physical value of the pion mass, Phys. Rev. D 92 (2015) 114513 [arXiv:1507.04936] [INSPIRE].ADSGoogle Scholar
  88. [88]
    N. Cabibbo, E.C. Swallow and R. Winston, Semileptonic hyperon decays, Ann. Rev. Nucl. Part. Sci. 53 (2003) 39 [hep-ph/0307298] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    M. González-Alonso and J. Martin Camalich, Isospin breaking in the nucleon mass and the sensitivity of β decays to new physics, Phys. Rev. Lett. 112 (2014) 042501 [arXiv:1309.4434] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    O. Naviliat-Cuncic and M. González-Alonso, Prospects for precision measurements in nuclear β decay at the LHC era, Annalen Phys. 525 (2013) 600 [arXiv:1304.1759] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    W.J. Marciano, Precise determination of |V us| from lattice calculations of pseudoscalar decay constants, Phys. Rev. Lett. 93 (2004) 231803 [hep-ph/0402299] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    A. Abada, D. Das, A.M. Teixeira, A. Vicente and C. Weiland, Tree-level lepton universality violation in the presence of sterile neutrinos: impact for R K and R π , JHEP 02 (2013) 048 [arXiv:1211.3052] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    A. de Gouvêa and A. Kobach, Global constraints on a heavy neutrino, Phys. Rev. D 93 (2016) 033005 [arXiv:1511.00683] [INSPIRE].ADSGoogle Scholar
  94. [94]
    PiENu collaboration, A. Aguilar-Arevalo et al., Improved measurement of the πeν branching ratio, Phys. Rev. Lett. 115 (2015) 071801 [arXiv:1506.05845] [INSPIRE].
  95. [95]
    M. Moulson, private communication.Google Scholar
  96. [96]
    I. Baum, V. Lubicz, G. Martinelli, L. Orifici and S. Simula, Matrix elements of the electromagnetic operator between kaon and pion states, Phys. Rev. D 84 (2011) 074503 [arXiv:1108.1021] [INSPIRE].ADSGoogle Scholar
  97. [97]
    J. Hardy and I. Towner, private communication.Google Scholar
  98. [98]
    MILC collaboration, A. Bazavov et al., Nonperturbative QCD simulations with 2 + 1 flavors of improved staggered quarks, Rev. Mod. Phys. 82 (2010) 1349 [arXiv:0903.3598] [INSPIRE].
  99. [99]
    HPQCD, UKQCD collaboration, E. Follana, C.T.H. Davies, G.P. Lepage and J. Shigemitsu, High precision determination of the π, K, D and D(s) decay constants from lattice QCD, Phys. Rev. Lett. 100 (2008) 062002 [arXiv:0706.1726] [INSPIRE].
  100. [100]
    S. Dürr et al., The ratio FK/Fpi in QCD, Phys. Rev. D 81 (2010) 054507 [arXiv:1001.4692] [INSPIRE].ADSGoogle Scholar
  101. [101]
    RBC, UKQCD collaboration, R. Arthur et al., Domain wall QCD with near-physical pions, Phys. Rev. D 87 (2013) 094514 [arXiv:1208.4412] [INSPIRE].
  102. [102]
    A. Bazavov et al., Kaon semileptonic vector form factor and determination of |V us| using staggered fermions, Phys. Rev. D 87 (2013) 073012 [arXiv:1212.4993] [INSPIRE].ADSGoogle Scholar
  103. [103]
    P.A. Boyle et al., The kaon semileptonic form factor with near physical domain wall quarks, JHEP 08 (2013) 132 [arXiv:1305.7217] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    H.-W. Lin and K. Orginos, First calculation of hyperon axial couplings from lattice QCD, Phys. Rev. D 79 (2009) 034507 [arXiv:0712.1214] [INSPIRE].ADSGoogle Scholar
  105. [105]
    QCDSF/UKQCD collaboration, M. Gockeler et al., Baryon axial charges and momentum fractions with N f = 2 + 1 dynamical fermions, PoS(LATTICE 2010)163 [arXiv:1102.3407] [INSPIRE].
  106. [106]
    A.N. Cooke et al., SU(3) flavour breaking and baryon structure, PoS(LATTICE 2013)278 [arXiv:1311.4916] [INSPIRE].
  107. [107]
    T. Ledwig, J. Martin Camalich, L.S. Geng and M.J. Vicente Vacas, Octet-baryon axial-vector charges and SU(3)-breaking effects in the semileptonic hyperon decays, Phys. Rev. D 90 (2014) 054502 [arXiv:1405.5456] [INSPIRE].ADSGoogle Scholar
  108. [108]
    R.S. Chivukula and H. Georgi, Composite technicolor standard model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  114. [114]
    A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    A. Falkowski and K. Mimouni, Model independent constraints on four-lepton operators, JHEP 02 (2016) 086 [arXiv:1511.07434] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    V. Cirigliano, M. Gonzalez-Alonso and M.L. Graesser, Non-standard charged current interactions: β decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    J. de Blas, M. Chala and J. Santiago, Global constraints on lepton-quark contact interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].ADSGoogle Scholar
  118. [118]
    Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].ADSGoogle Scholar
  119. [119]
    L. Berthier and M. Trott, Consistent constraints on the standard model effective field theory, JHEP 02 (2016) 069 [arXiv:1508.05060] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC Run I, Eur. Phys. J. C 76 (2016) 416 [arXiv:1604.06801] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the validity of the effective field theory approach to SM precision tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    CMS collaboration, Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 092005 [arXiv:1408.2745] [INSPIRE].
  123. [123]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Martín González-Alonso
    • 1
  • Jorge Martin Camalich
    • 2
    Email author
  1. 1.IPN de Lyon/CNRS, Universite Lyon 1VilleurbanneFrance
  2. 2.CERN, Theoretical Physics DepartmentGenevaSwitzerland

Personalised recommendations