Journal of High Energy Physics

, 2016:33 | Cite as

Impeded Dark Matter

  • Joachim Kopp
  • Jia LiuEmail author
  • Tracy R. Slatyer
  • Xiao-Ping Wang
  • Wei Xue
Open Access
Regular Article - Theoretical Physics


We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z-portal, Phys. Lett. B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  6. [6]
    Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP 05 (2016) 090 [arXiv:1512.07917] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R.T. D’Agnolo and A. Hook, Selfish Dark Matter, Phys. Rev. D 91 (2015) 115020 [arXiv:1504.00361] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.T. D’Agnolo and J.T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett. 115 (2015) 061301 [arXiv:1505.07107] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Delgado, A. Martin and N. Raj, Forbidden Dark Matter at the Weak Scale via the Top Portal, arXiv:1608.05345 [INSPIRE].
  10. [10]
    E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Pappadopulo, J.T. Ruderman and G. Trevisan, Dark matter freeze-out in a nonrelativistic sector, Phys. Rev. D 94 (2016) 035005 [arXiv:1602.04219] [INSPIRE].ADSGoogle Scholar
  12. [12]
    N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production Regimes for Self-Interacting Dark Matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Bernal and X. Chu, Z 2 SIMP Dark Matter, JCAP 01 (2016) 006 [arXiv:1510.08527] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Farina, D. Pappadopulo, J.T. Ruderman and G. Trevisan, Phases of Cannibal Dark Matter, arXiv:1607.03108 [INSPIRE].
  16. [16]
    J.A. Dror, E. Kuflik and W.H. Ng, Co-Decaying Dark Matter, Phys. Rev. Lett. 117 (2016) 211801 [arXiv:1607.03110] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Okawa, M. Tanabashi and M. Yamanaka, Relic Abundance in Secluded Dark Matter Scenario with Massive Mediator, arXiv:1607.08520 [INSPIRE].
  18. [18]
    P. Bandyopadhyay, E.J. Chun and J.-C. Park, Right-handed sneutrino dark matter in U(1)′ seesaw models and its signatures at the LHC, JHEP 06 (2011) 129 [arXiv:1105.1652] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  19. [19]
    F. D’Eramo and J. Thaler, Semi-annihilation of Dark Matter, JHEP 06 (2010) 109 [arXiv:1003.5912] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    K. Agashe, Y. Cui, L. Necib and J. Thaler, (In)direct Detection of Boosted Dark Matter, JCAP 10 (2014) 062 [arXiv:1405.7370] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Berger, Y. Cui and Y. Zhao, Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors, JCAP 02 (2015) 005 [arXiv:1410.2246] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Kopp, J. Liu and X.-P. Wang, Boosted Dark Matter in IceCube and at the Galactic Center, JHEP 04 (2015) 105 [arXiv:1503.02669] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Berlin, D. Hooper and G. Krnjaic, PeV-Scale Dark Matter as a Thermal Relic of a Decoupled Sector, Phys. Lett. B 760 (2016) 106 [arXiv:1602.08490] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L.-B. Jia, Study of WIMP annihilations into a pair of on-shell scalar mediators, Phys. Rev. D 94 (2016) 095028 [arXiv:1607.00737] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Fan, M. Reece and J.T. Ruderman, Stealth Supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Fan, M. Reece and J.T. Ruderman, A Stealth Supersymmetry Sampler, JHEP 07 (2012) 196 [arXiv:1201.4875] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Fan, R. Krall, D. Pinner, M. Reece and J.T. Ruderman, Stealth Supersymmetry Simplified, JHEP 07 (2016) 016 [arXiv:1512.05781] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Y. Farzan and A.R. Akbarieh, VDM: A model for Vector Dark Matter, JCAP 10 (2012) 026 [arXiv:1207.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs Portal Vector Dark Matter : Revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP 10 (2014) 067 [arXiv:1311.1035] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, JCAP 09 (2014) 013 [arXiv:1404.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Baek, P. Ko, W.-I. Park and Y. Tang, Indirect and direct signatures of Higgs portal decaying vector dark matter for positron excess in cosmic rays, JCAP 06 (2014) 046 [arXiv:1402.2115] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Baek, P. Ko and W.-I. Park, Invisible Higgs Decay Width vs. Dark Matter Direct Detection Cross Section in Higgs Portal Dark Matter Models, Phys. Rev. D 90 (2014) 055014 [arXiv:1405.3530] [INSPIRE].ADSGoogle Scholar
  36. [36]
    C.-H. Chen and T. Nomura, SU(2)X vector DM and Galactic Center gamma-ray excess, Phys. Lett. B 746 (2015) 351 [arXiv:1501.07413] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  37. [37]
    C. Gross, O. Lebedev and Y. Mambrini, Non-Abelian gauge fields as dark matter, JHEP 08 (2015) 158 [arXiv:1505.07480] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    J.S. Kim, O. Lebedev and D. Schmeier, Higgsophilic gauge bosons and monojets at the LHC, JHEP 11 (2015) 128 [arXiv:1507.08673] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Di Chiara and K. Tuominen, A minimal model for SU(N) vector dark matter, JHEP 11 (2015) 188 [arXiv:1506.03285] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C.-H. Chen and T. Nomura, Searching for vector dark matter via Higgs portal at the LHC, Phys. Rev. D 93 (2016) 074019 [arXiv:1507.00886] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Karam and K. Tamvakis, Dark Matter from a Classically Scale-Invariant SU(3)X, Phys. Rev. D 94 (2016) 055004 [arXiv:1607.01001] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.L. Diaz-Cruz and E. Ma, Neutral SU(2) Gauge Extension of the Standard Model and a Vector-Boson Dark-Matter Candidate, Phys. Lett. B 695 (2011) 264 [arXiv:1007.2631] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Bhattacharya, J.L. Diaz-Cruz, E. Ma and D. Wegman, Dark Vector-Gauge-Boson Model, Phys. Rev. D 85 (2012) 055008 [arXiv:1107.2093] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C.-W. Chiang, T. Nomura and J. Tandean, Nonabelian Dark Matter with Resonant Annihilation, JHEP 01 (2014) 183 [arXiv:1306.0882] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Fraser, E. Ma and M. Zakeri, SU(2)N model of vector dark matter with a leptonic connection, Int. J. Mod. Phys. A 30 (2015) 1550018 [arXiv:1409.1162] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  46. [46]
    H. Davoudiasl and I.M. Lewis, Dark Matter from Hidden Forces, Phys. Rev. D 89 (2014) 055026 [arXiv:1309.6640] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. DiFranzo, P.J. Fox and T.M.P. Tait, Vector Dark Matter through a Radiative Higgs Portal, JHEP 04 (2016) 135 [arXiv:1512.06853] [INSPIRE].ADSGoogle Scholar
  48. [48]
    F. D’Eramo, M. McCullough and J. Thaler, Multiple Gamma Lines from Semi-Annihilation, JCAP 04 (2013) 030 [arXiv:1210.7817] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    LUX collaboration, Dark-matter results from 332 new live days of lux data, talk at 11th Identification of Dark Matter conference, Sheffield U.K. (2016),
  51. [51]
    LUX collaboration, D.S. Akerib et al., Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data, Phys. Rev. Lett. 116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].
  52. [52]
    PandaX-II collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  53. [53]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  54. [54]
    Fermi-LAT collaboration, M. Ackermann et al., Search for gamma-ray spectral lines with the Fermi large area telescope and dark matter implications, Phys. Rev. D 88 (2013) 082002 [arXiv:1305.5597] [INSPIRE].
  55. [55]
    G. Ovanesyan, T.R. Slatyer and I.W. Stewart, Heavy Dark Matter Annihilation from Effective Field Theory, Phys. Rev. Lett. 114 (2015) 211302 [arXiv:1409.8294] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z’-mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    CHARM collaboration, F. Bergsma et al., A Search for Decays of Heavy Neutrinos in the Mass Range 0.5-GeV to 2.8-GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].
  59. [59]
    A. Konaka et al., Search for Neutral Particles in Electron Beam Dump Experiment, Phys. Rev. Lett. 57 (1986) 659 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    E.M. Riordan et al., A Search for Short Lived Axions in an Electron Beam Dump Experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Bross, M. Crisler, S.H. Pordes, J. Volk, S. Errede and J. Wrbanek, A Search for Shortlived Particles Produced in an Electron Beam Dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Davier and H. Nguyen Ngoc, An Unambiguous Search for a Light Higgs Boson, Phys. Lett. B 229 (1989) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    LSND collaboration, C. Athanassopoulos et al., Evidence for muon-neutrinoelectron-neutrino oscillations from pion decay in flight neutrinos, Phys. Rev. C 58 (1998) 2489 [nucl-ex/9706006] [INSPIRE].
  65. [65]
    NOMAD collaboration, P. Astier et al., Search for heavy neutrinos mixing with tau neutrinos, Phys. Lett. B 506 (2001) 27 [hep-ex/0101041] [INSPIRE].
  66. [66]
    E787 collaboration, S. Adler et al., Further search for the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) in the momentum region P < 195-MeV/c, Phys. Rev. D 70 (2004) 037102 [hep-ex/0403034] [INSPIRE].
  67. [67]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New Fixed-Target Experiments to Search for Dark Gauge Forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSGoogle Scholar
  68. [68]
    BNL-E949 collaboration, A.V. Artamonov et al., Study of the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) in the momentum region 140 < P π < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].
  69. [69]
    R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering New Light States at Neutrino Experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J. Blumlein and J. Brunner, New Exclusion Limits for Dark Gauge Forces from Beam-Dump Data, Phys. Lett. B 701 (2011) 155 [arXiv:1104.2747] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S.N. Gninenko, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, Phys. Lett. B 713 (2012) 244 [arXiv:1204.3583] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J. Blümlein and J. Brunner, New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    APEX collaboration, S. Abrahamyan et al., Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment, Phys. Rev. Lett. 107 (2011)191804 [arXiv:1108.2750] [INSPIRE].
  74. [74]
    H. Merkel et al., Search at the Mainz Microtron for Light Massive Gauge Bosons Relevant for the Muon g-2 Anomaly, Phys. Rev. Lett. 112 (2014) 221802 [arXiv:1404.5502] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A1 collaboration, H. Merkel et al., Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].
  76. [76]
    BaBar collaboration, B. Aubert et al., Search for Dimuon Decays of a Light Scalar Boson in Radiative Transitions Upsilongamma A0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].
  77. [77]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].ADSGoogle Scholar
  78. [78]
    BaBar collaboration, J.P. Lees et al., Search for a Dark Photon in e + e Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  79. [79]
    G. Bernardi et al., Search for Neutrino Decay, Phys. Lett. B 166 (1986) 479 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    SINDRUM I collaboration, R. Meijer Drees et al., Search for weakly interacting neutral bosons produced in π p interactions at rest and decaying into e + e pairs., Phys. Rev. Lett. 68 (1992) 3845 [INSPIRE].
  81. [81]
    KLOE-2 collaboration, F. Archilli et al., Search for a vector gauge boson in φ meson decays with the KLOE detector, Phys. Lett. B 706 (2012) 251 [arXiv:1110.0411] [INSPIRE].
  82. [82]
    S.N. Gninenko, Stringent limits on the π 0γX, Xe + e decay from neutrino experiments and constraints on new light gauge bosons, Phys. Rev. D 85 (2012) 055027 [arXiv:1112.5438] [INSPIRE].ADSGoogle Scholar
  83. [83]
    KLOE-2 collaboration, D. Babusci et al., Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 720 (2013) 111 [arXiv:1210.3927] [INSPIRE].
  84. [84]
    WASA-at-COSY collaboration, P. Adlarson et al., Search for a dark photon in the π 0e + e γ decay, Phys. Lett. B 726 (2013) 187 [arXiv:1304.0671] [INSPIRE].
  85. [85]
    HADES collaboration, G. Agakishiev et al., Searching a Dark Photon with HADES, Phys. Lett. B 731 (2014) 265 [arXiv:1311.0216] [INSPIRE].
  86. [86]
    PHENIX collaboration, A. Adare et al., Search for dark photons from neutral meson decays in p + p and d + Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 91 (2015) 031901 [arXiv:1409.0851] [INSPIRE].
  87. [87]
    NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π 0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
  88. [88]
    KLOE-2 collaboration, A. Anastasi et al., Limit on the production of a new vector boson in e + e Uγ, Uπ + π with the KLOE experiment, Phys. Lett. B 757 (2016) 356 [arXiv:1603.06086] [INSPIRE].
  89. [89]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  90. [90]
    G. Elor, N.L. Rodd, T.R. Slatyer and W. Xue, Model-Independent Indirect Detection Constraints on Hidden Sector Dark Matter, JCAP 06 (2016) 024 [arXiv:1511.08787] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    Fermi-LAT collaboration, M. Ackermann et al., Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT, Astrophys. J. 812 (2015) 159 [arXiv:1510.00004] [INSPIRE].
  92. [92]
    A. Massari, E. Izaguirre, R. Essig, A. Albert, E. Bloom and G.A. Gómez-Vargas, Strong Optimized Conservative Fermi-LAT Constraints on Dark Matter Models from the Inclusive Photon Spectrum, Phys. Rev. D 91 (2015) 083539 [arXiv:1503.07169] [INSPIRE].ADSGoogle Scholar
  93. [93]
    R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    E. Masso, S. Mohanty and S. Rao, Dipolar Dark Matter, Phys. Rev. D 80 (2009) 036009 [arXiv:0906.1979] [INSPIRE].ADSGoogle Scholar
  96. [96]
    E. Del Nobile, C. Kouvaris, P. Panci, F. Sannino and J. Virkajarvi, Light Magnetic Dark Matter in Direct Detection Searches, JCAP 08 (2012) 010 [arXiv:1203.6652] [INSPIRE].CrossRefGoogle Scholar
  97. [97]
    D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, arXiv:1608.07648 [INSPIRE].
  98. [98]
    J. A. Adams, S. Sarkar, and D. Sciama, CMB anisotropy in the decaying neutrino cosmology, Mon. Not. Roy. Astron. Soc. 301 (1998) 210 [astro-ph/9805108].ADSCrossRefGoogle Scholar
  99. [99]
    N. Padmanabhan and D.P. Finkbeiner, Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects, Phys. Rev. D 72 (2005) 023508 [astro-ph/0503486] [INSPIRE].ADSGoogle Scholar
  100. [100]
    S. Galli, F. Iocco, G. Bertone and A. Melchiorri, CMB constraints on Dark Matter models with large annihilation cross-section, Phys. Rev. D 80 (2009) 023505 [arXiv:0905.0003] [INSPIRE].ADSGoogle Scholar
  101. [101]
    T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB Constraints on WIMP Annihilation: Energy Absorption During the Recombination Epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [INSPIRE].ADSGoogle Scholar
  102. [102]
    D.P. Finkbeiner, S. Galli, T. Lin and T.R. Slatyer, Searching for Dark Matter in the CMB: A Compact Parameterization of Energy Injection from New Physics, Phys. Rev. D 85 (2012) 043522 [arXiv:1109.6322] [INSPIRE].ADSGoogle Scholar
  103. [103]
    M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].ADSGoogle Scholar
  104. [104]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].ADSGoogle Scholar
  105. [105]
    J. Liu, N. Weiner and W. Xue, Signals of a Light Dark Force in the Galactic Center, JHEP 08 (2015) 050 [arXiv:1412.1485] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    F. Iocco, M. Pato, G. Bertone and P. Jetzer, Dark Matter distribution in the Milky Way: microlensing and dynamical constraints, JCAP 11 (2011) 029 [arXiv:1107.5810] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    R. Catena and P. Ullio, A novel determination of the local dark matter density, JCAP 08 (2010) 004 [arXiv:0907.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    P. Salucci, F. Nesti, G. Gentile and C.F. Martins, The dark matter density at the Sun’s location, Astron. Astrophys. 523 (2010) A83 [arXiv:1003.3101] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  110. [110]
    F. Iocco, M. Pato and G. Bertone, Evidence for dark matter in the inner Milky Way, Nature Phys. 11 (2015) 245 [arXiv:1502.03821] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    D.E. Gruber, J.L. Matteson, L.E. Peterson and G.V. Jung, The spectrum of diffuse cosmic hard x-rays measured with heao-1, Astrophys. J. 520 (1999) 124 [astro-ph/9903492] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    L. Bouchet et al., INTEGRAL SPI All-Sky View in Soft Gamma Rays: Study of Point Source and Galactic Diffuse Emissions, Astrophys. J. 679 (2008) 1315 [arXiv:0801.2086] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    S.C. Kappadath, Measurement of the Cosmic Diffuse Gamma-Ray Spectrum from 800 keV to 30 MeV, Ph.D. Thesis, University of New Hampshire, Main U.S.A. (1998).Google Scholar
  114. [114]
    A.W. Strong, I.V. Moskalenko and O. Reimer, Diffuse galactic continuum gamma rays. A Model compatible with EGRET data and cosmic-ray measurements, Astrophys. J. 613 (2004) 962 [astro-ph/0406254] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    Fermi-LAT collaboration, M. Ackermann et al., Fermi-LAT Observations of the Diffuse Gamma-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium, Astrophys. J. 750 (2012) 3 [arXiv:1202.4039] [INSPIRE].
  116. [116]
    AMS collaboration, M. Aguilar et al., Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 121102 [INSPIRE].
  117. [117]
    L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper and C. Weniger, New limits on dark matter annihilation from AMS cosmic ray positron data, Phys. Rev. Lett. 111 (2013) 171101 [arXiv:1306.3983] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    C. Evoli, D. Gaggero, D. Grasso and L. Maccione, Cosmic-Ray Nuclei, Antiprotons and Gamma-rays in the Galaxy: a New Diffusion Model, JCAP 10 (2008) 018 [arXiv:0807.4730] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    L. Maccione, C. Evoli, D. Gaggero and D. Grasso, DRAGON: Galactic Cosmic Ray Diffusion Code, Astrophysics source code library (2011).Google Scholar
  120. [120]
    H.E.S.S. collaboration, A. Abramowski et al., Search for Photon-Linelike Signatures from Dark Matter Annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].
  121. [121]
    S. Profumo, F.S. Queiroz and C.E. Yaguna, Extending Fermi-LAT and H.E.S.S. Limits on Gamma-ray Lines from Dark Matter Annihilation, Mon. Not. Roy. Astron. Soc. 461 (2016) 3976 [arXiv:1602.08501] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    T.A. Ryttov and F. Sannino, Ultra Minimal Technicolor and its Dark Matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [INSPIRE].ADSGoogle Scholar
  123. [123]
    Y. Bai and A. Martin, Topological Pions, Phys. Lett. B 693 (2010) 292 [arXiv:1003.3006] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    Y. Bai and R.J. Hill, Weakly Interacting Stable Pions, Phys. Rev. D 82 (2010) 111701 [arXiv:1005.0008] [INSPIRE].ADSGoogle Scholar
  125. [125]
    T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    J. Fan and M. Reece, Simple dark matter recipe for the 111 and 128 GeV Fermi-LAT lines, Phys. Rev. D 88 (2013) 035014 [arXiv:1209.1097] [INSPIRE].ADSGoogle Scholar
  127. [127]
    M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    M.R. Buckley and E.T. Neil, Thermal dark matter from a confining sector, Phys. Rev. D 87 (2013) 043510 [arXiv:1209.6054] [INSPIRE].ADSGoogle Scholar
  129. [129]
    S. Bhattacharya, B. Melić and J. Wudka, Pionic Dark Matter, JHEP 02 (2014) 115 [arXiv:1307.2647] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  130. [130]
    M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector, JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].ADSGoogle Scholar
  132. [132]
    N. Yamanaka, S. Fujibayashi, S. Gongyo and H. Iida, Dark matter in the hidden gauge theory, arXiv:1411.2172 [INSPIRE].
  133. [133]
    A. Carmona and M. Chala, Composite Dark Sectors, JHEP 06 (2015) 105 [arXiv:1504.00332] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  134. [134]
    Y. Ametani, M. Aoki, H. Goto and J. Kubo, Nambu-Goldstone Dark Matter in a Scale Invariant Bright Hidden Sector, Phys. Rev. D 91 (2015) 115007 [arXiv:1505.00128] [INSPIRE].ADSGoogle Scholar
  135. [135]
    H. Hatanaka, D.-W. Jung and P. Ko, AdS/QCD approach to the scale-invariant extension of the standard model with a strongly interacting hidden sector, JHEP 08 (2016) 094 [arXiv:1606.02969] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  136. [136]
    K. Harigaya and Y. Nomura, Composite Models for the 750 GeV Diphoton Excess, Phys. Lett. B 754 (2016) 151 [arXiv:1512.04850] [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    Y. Bai, J. Berger and R. Lu, 750 GeV dark pion: Cousin of a dark G-parity odd WIMP, Phys. Rev. D 93 (2016) 076009 [arXiv:1512.05779] [INSPIRE].ADSGoogle Scholar
  138. [138]
    T. Das, G.S. Guralnik, V.S. Mathur, F.E. Low and J.E. Young, Electromagnetic mass difference of pions, Phys. Rev. Lett. 18 (1967) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    J.F. Donoghue and A.F. Perez, The Electromagnetic mass differences of pions and kaons, Phys. Rev. D 55 (1997) 7075 [hep-ph/9611331] [INSPIRE].ADSGoogle Scholar
  140. [140]
    S. Weinberg, Pion scattering lengths, Phys. Rev. Lett. 17 (1966) 616 [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    J. Kumar and D. Marfatia, Matrix element analyses of dark matter scattering and annihilation, Phys. Rev. D 88 (2013) 014035 [arXiv:1305.1611] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Joachim Kopp
    • 1
  • Jia Liu
    • 1
    Email author
  • Tracy R. Slatyer
    • 2
  • Xiao-Ping Wang
    • 1
  • Wei Xue
    • 2
  1. 1.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations