Rescuing complementarity with little drama

Abstract

The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it “little-drama”) which is the “complementarity dual” of scrambling of information on the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the information-theoretic task that an observer must perform after crossing the event horizon of a Schwarzschild black hole in order to verify a violation of monogamy of entanglement. We find that the time required to complete a necessary subroutine of this task, namely the decoding of Bell pairs from the interior and the late radiation, takes longer than the maximum amount of time that an observer can spend inside the black hole before hitting the singularity. Therefore, an infalling observer cannot observe monogamy violation before encountering the singularity.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S.W. Hawking, Information loss in black holes, Phys. Rev. D 72 (2005) 084013 [hep-th/0507171] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. [2]

    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. [5]

    P. Chen, Y.C. Ong and D.-h. Yeom, Black Hole Remnants and the Information Loss Paradox, Phys. Rept. 603 (2015) 1 [arXiv:1412.8366] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    S. Lloyd and J. Preskill, Unitarity of black hole evaporation in final-state projection models, JHEP 08 (2014) 126 [arXiv:1308.4209] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    S.B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88 (2013) 064023 [arXiv:1211.7070] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    M. Hotta and A. Sugita, The Fall of Black Hole Firewall: Natural Nonmaximal Entanglement for Page Curve, PTEP 2015 (2015) 123B04 [arXiv:1505.05870] [INSPIRE].

  12. [12]

    Y. Nomura, F. Sanches and S.J. Weinberg, Black Hole Interior in Quantum Gravity, Phys. Rev. Lett. 114 (2015) 201301 [arXiv:1412.7539] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    Y. Nomura, F. Sanches and S.J. Weinberg, Relativeness in Quantum Gravity: Limitations and Frame Dependence of Semiclassical Descriptions, JHEP 04 (2015) 158 [arXiv:1412.7538] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    Y. Nomura and N. Salzetta, Why Firewalls Need Not Exist, Phys. Lett. B 761 (2016) 62 [arXiv:1602.07673] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].

  16. [16]

    C.H. Bennett, H.J. Bernstein, S. Popescu and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53 (1996) 2046 [quant-ph/9511030] [INSPIRE].

  17. [17]

    J. Oppenheim and W.G. Unruh, Firewalls and flat mirrors: An alternative to the AMPS experiment which evades the Harlow-Hayden obstacle, JHEP 03 (2014) 120 [arXiv:1401.1523] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    S. Aaronson, Computational complexity underpinnings of the Harlow-Hayden argument, unpublished.

  19. [19]

    K.S. Thorne, R.H. Price and D.A. Macdonald, Black Holes: The Membrane Paradigm, Yale University Press, New Haven, U.S.A. (1986), pg. 367.

    Google Scholar 

  20. [20]

    Y. Nomura, Physical Theories, Eternal Inflation and Quantum Universe, JHEP 11 (2011) 063 [arXiv:1104.2324] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  21. [21]

    P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    D.N. Page, Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    D.N. Page, Particle Emission Rates from a Black Hole. 2. Massless Particles from a Rotating Hole, Phys. Rev. D 14 (1976) 3260 [INSPIRE].

  29. [29]

    S.B. Giddings, Hawking radiation, the Stefan-Boltzmann law and unitarization, Phys. Lett. B 754 (2016) 39 [arXiv:1511.08221] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  30. [30]

    D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    D.N. Page, Time Dependence of Hawking Radiation Entropy, JCAP 09 (2013) 028 [arXiv:1301.4995] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    F.G.S.L. Brandao, A. Harrow and M. Horodecki, Local random quantum circuits are approximate polynomial-designs, arXiv:1208.0692.

  33. [33]

    C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev. Lett. A 80 (2009) 012304.

    Google Scholar 

  34. [34]

    J. Shore and R. Johnson, Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy, IEEE Trans. Inf. Theory 26 (1980) 26.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    B. Freivogel, R.A. Jefferson, L. Kabir and I.-S. Yang, Geometry of the Infalling Causal Patch, Phys. Rev. D 91 (2015) 044036 [arXiv:1406.6043] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. [36]

    S. Raju, Smooth Causal Patches for AdS Black Holes, arXiv:1604.03095 [INSPIRE].

  37. [37]

    S.D. Mathur and D. Turton, The flaw in the firewall argument, Nucl. Phys. B 884 (2014) 566 [arXiv:1306.5488] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  38. [38]

    S.D. Mathur, A model with no firewall, arXiv:1506.04342 [INSPIRE].

  39. [39]

    G. Dotti and R.J. Gleiser, Gravitational instability of the inner static region of a Reissner-Nordstrom black hole, Class. Quant. Grav. 27 (2010) 185007 [arXiv:1001.0152] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    N. Engelhardt and G.T. Horowitz, Holographic Consequences of a No Transmission Principle, Phys. Rev. D 93 (2016) 026005 [arXiv:1509.07509] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aidan Chatwin-Davies.

Additional information

ArXiv ePrint: 1607.05141

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, N., Bouland, A., Chatwin-Davies, A. et al. Rescuing complementarity with little drama. J. High Energ. Phys. 2016, 26 (2016). https://doi.org/10.1007/JHEP12(2016)026

Download citation

Keywords

  • Black Holes
  • Models of Quantum Gravity