Deconstructing zero: resurgence, supersymmetry and complex saddles

Open Access
Regular Article - Theoretical Physics

Abstract

We explain how a vanishing, or truncated, perturbative expansion, such as often arises in semi-classically tractable supersymmetric theories, can nevertheless be related to fluctuations about non-perturbative sectors via resurgence. We also demonstrate that, in the same class of theories, the vanishing of the ground state energy (unbroken supersymmetry) can be attributed to the cancellation between a real saddle and a complex saddle (with hidden topological angle π), and positivity of the ground state energy (broken supersymmetry) can be interpreted as the dominance of complex saddles. In either case, despite the fact that the ground state energy is zero to all orders in perturbation theory, all orders of fluctuations around non-perturbative saddles are encoded in the perturbative E (N, g). We illustrate these ideas with examples from supersymmetric quantum mechanics and quantum field theory.

Keywords

Nonperturbative Effects Supersymmetric gauge theory Supersymmetry Breaking 

References

  1. [1]
    E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    G.V. Dunne and M. Ünsal, New Methods in QFT and QCD: From Large-N Orbifold Equivalence to Bions and Resurgence, Ann. Rev. Nucl. Part. Sci.66(2016) 245 [arXiv:1601.03414] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    E.B. Bogomolny, Calculation of instanton-anti-instanton contributions in quantum mechanics, Phys. Lett. B 91 (1980) 431 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Zinn-Justin, Multi-Instanton Contributions in Quantum Mechanics, Nucl. Phys. B 192 (1981) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.V. Berry and C.J. Howls, Hyperasymptotics for Integrals with Saddles, Proc. Roy. Soc. Lond. A 434 (1991) 657.ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    G. Álvarez and C. Casares, Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator, J. Phys. A 33 (2000) 5171.ADSMathSciNetMATHGoogle Scholar
  8. [8]
    G. Álvarez, Langer-Cherry derivation of the multi-instanton expansion for the symmetric double well, J. Math. Phys. 45 (2004) 3095.ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    G. Álvarez, C. J. Howls and H. J. Silverstone, Anharmonic oscillator discontinuity formulae up to second-exponentially-small order, J. Phys. A 35 (2002) 4003.ADSMathSciNetMATHGoogle Scholar
  10. [10]
    G.V. Dunne and M. Ünsal, Generating nonperturbative physics from perturbation theory, Phys. Rev. D 89 (2014) 041701 [arXiv:1306.4405] [INSPIRE].ADSGoogle Scholar
  11. [11]
    G.V. Dunne and M. Ünsal, Uniform WKB, Multi-instantons and Resurgent Trans-Series, Phys. Rev. D 89 (2014) 105009 [arXiv:1401.5202] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Basar and G.V. Dunne, Resurgence and the Nekrasov-Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems, JHEP 02 (2015) 160 [arXiv:1501.05671] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.V. Dunne and M. Ünsal, WKB and Resurgence in the Mathieu Equation, arXiv:1603.04924 [INSPIRE].
  14. [14]
    G. Basar, G.V. Dunne and M. Ünsal, Quantum Geometry of Resurgent Perturbative/Nonperturbative Relations, to appear.Google Scholar
  15. [15]
    U.D. Jentschura and J. Zinn-Justin, Instantons in quantum mechanics and resurgent expansions, Phys. Lett. B 596 (2004) 138 [hep-ph/0405279] [INSPIRE].
  16. [16]
    A. Behtash, T. Sulejmanpasic, T. Schaefer and M. Ünsal, Hidden topological angles and Lefschetz thimbles, Phys. Rev. Lett. 115 (2015) 041601 [arXiv:1502.06624] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Behtash, E. Poppitz, T. Sulejmanpasic and M. Ünsal, The curious incident of multi-instantons and the necessity of Lefschetz thimbles, JHEP 11 (2015) 175 [arXiv:1507.04063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Behtash, G.V. Dunne, T. Schaefer, T. Sulejmanpasic and M. Ünsal, Complexified path integrals, exact saddles and supersymmetry, Phys. Rev. Lett. 116 (2016) 011601 [arXiv:1510.00978] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    A. Behtash, G.V. Dunne, T. Schaefer, T. Sulejmanpasic and M. Ünsal, Toward Picard-Lefschetz Theory of Path Integrals, Complex Saddles and Resurgence, arXiv:1510.03435 [INSPIRE].
  20. [20]
    T. Sulejmanpasic and M. Ünsal, Aspects of Perturbation theory in Quantum Mechanics: The BenderWu Mathematica package, arXiv:1608.08256 [INSPIRE].
  21. [21]
    C. Kozçaz, T. Sulejmanpasic, Y. Tanizaki and M. Ünsal, Cheshire Cat resurgence, Self-resurgence and Quasi-Exact Solvable Systems, arXiv:1609.06198 [INSPIRE].
  22. [22]
    I. Aniceto and R. Schiappa, Nonperturbative Ambiguities and the Reality of Resurgent Transseries, Commun. Math. Phys. 335 (2015) 183 [arXiv:1308.1115] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Supersymmetric QCD, Nucl. Phys. B 241 (1984) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.V. Yung, Instanton Vacuum in Supersymmetric QCD, Nucl. Phys. B 297 (1988) 47 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    I. Affleck, J.A. Harvey and E. Witten, Instantons and (Super)Symmetry Breaking in (2+1)-Dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    N.M. Davies, T.J. Hollowood and V.V. Khoze, Monopoles, affine algebras and the gluino condensate, J. Math. Phys. 44 (2003) 3640 [hep-th/0006011] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    E. Poppitz, T. Schaefer and M. Ünsal, Continuity, Deconfinement and (Super) Yang-Mills Theory, JHEP 10 (2012) 115 [arXiv:1205.0290] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Ünsal, Magnetic bion condensation: A new mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M.M. Anber and E. Poppitz, Microscopic Structure of Magnetic Bions, JHEP 06 (2011) 136 [arXiv:1105.0940] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    E. Poppitz and M. Ünsal, Seiberg-Witten andPolyakov-likemagnetic bion confinements are continuously connected, JHEP 07 (2011) 082 [arXiv:1105.3969] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    P.C. Argyres and M. Ünsal, The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion and renormalon effects, JHEP 08 (2012) 063 [arXiv:1206.1890] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    P. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev. Lett. 109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G.V. Dunne and M. Ünsal, Resurgence and Trans-series in Quantum Field Theory: The CP(N-1) Model, JHEP 11 (2012) 170 [arXiv:1210.2423] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    G.V. Dunne and M. Ünsal, Continuity and Resurgence: towards a continuum definition of the ℂℙ(N − 1) model, Phys. Rev. D 87 (2013) 025015 [arXiv:1210.3646] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Cherman, D. Dorigoni, G.V. Dunne and M. Ünsal, Resurgence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral Model, Phys. Rev. Lett. 112 (2014) 021601 [arXiv:1308.0127] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Cherman, D. Dorigoni and M. Ünsal, Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles, JHEP 10 (2015) 056 [arXiv:1403.1277] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    G.V. Dunne and M. Ünsal, Resurgence and Dynamics of O(N) and Grassmannian σ-models, JHEP 09 (2015) 199 [arXiv:1505.07803] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    T. Misumi, M. Nitta and N. Sakai, Non-BPS exact solutions and their relation to bions in ℂP N − 1 models, JHEP 05 (2016) 057 [arXiv:1604.00839] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    T. Fujimori, S. Kamata, T. Misumi, M. Nitta and N. Sakai, Nonperturbative contributions from complexified solutions in ℂP N − 1 models, Phys. Rev. D 94 (2016) 105002 [arXiv:1607.04205] [INSPIRE].ADSGoogle Scholar
  40. [40]
    Y. Liu, E. Shuryak and I. Zahed, Confining dyon-antidyon Coulomb liquid model. I., Phys. Rev. D 92 (2015) 085006 [arXiv:1503.03058] [INSPIRE].
  41. [41]
    A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    M.-x. Huang, A.-K. Kashani-Poor and A. Klemm, The Ω deformed B-model for rigid \( \mathcal{N}=2 \) theories, Annales Henri Poincaré 14 (2013) 425 [arXiv:1109.5728] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    D. Krefl, Non-Perturbative Quantum Geometry, JHEP 02 (2014) 084 [arXiv:1311.0584] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    A.-K. Kashani-Poor and J. Troost, Pure \( \mathcal{N}=2 \) super Yang-Mills and exact WKB, JHEP 08 (2015) 160 [arXiv:1504.08324] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  45. [45]
    J.G. Russo, A note on perturbation series in supersymmetric gauge theories, JHEP 06 (2012) 038 [arXiv:1203.5061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    I. Aniceto, J.G. Russo and R. Schiappa, Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories, JHEP 03 (2015) 172 [arXiv:1410.5834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    R. Couso-Santamar´ıa, R. Schiappa and R. Vaz, Finite N from Resurgent Large-N , Annals Phys. 356 (2015) 1 [arXiv:1501.01007] [INSPIRE].
  48. [48]
    M. Honda, Borel Summability of Perturbative Series in 4D N = 2 and 5D N = 1 Supersymmetric Theories, Phys. Rev. Lett. 116 (2016) 211601 [arXiv:1603.06207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M. Honda, How to resum perturbative series in 3d N = 2 Chern-Simons matter theories, Phys. Rev. D 94 (2016) 025039 [arXiv:1604.08653] [INSPIRE].ADSGoogle Scholar
  50. [50]
    S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 [INSPIRE].
  51. [51]
    M. Mariño, Localization at large-N in Chern-Simons-matter theories, arXiv:1608.02959 [INSPIRE].
  52. [52]
    A.V. Turbiner, Quasiexactly Solvable Problems and SL(2) Group, Commun. Math. Phys. 118 (1988) 467 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    S.M. Klishevich and M.S. Plyushchay, Nonlinear supersymmetry, quantum anomaly and quasiexactly solvable systems, Nucl. Phys. B 606 (2001) 583 [hep-th/0012023] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  54. [54]
    S. Minakshisundaram, Zeta Functions on the Sphere, J. Indian Math. Soc. 13 (1949) 41.MathSciNetMATHGoogle Scholar
  55. [55]
    D.J. Gross and E. Witten, Possible Third Order Phase Transition in the Large-N Lattice Gauge Theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].ADSGoogle Scholar
  56. [56]
    S.R. Wadia, A Study of U(N) Lattice Gauge Theory in 2-dimensions, arXiv:1212.2906 [INSPIRE].
  57. [57]
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    M.R. Douglas and V.A. Kazakov, Large-N phase transition in continuum QCD in two-dimensions, Phys. Lett. B 319 (1993) 219 [hep-th/9305047] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    M. Mariño, Instantons and Large N: An Introduction to Non-Perturbative Methods in Quantum Field Theory, Cambridge University Press, (2015).Google Scholar
  61. [61]
    M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys. B 498 (1997) 195 [hep-th/9701093] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    M.B. Green and S. Sethi, Supersymmetry constraints on type IIB supergravity, Phys. Rev. D 59 (1999) 046006 [hep-th/9808061] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    M.B. Green, J.G. Russo and P. Vanhove, Automorphic properties of low energy string amplitudes in various dimensions, Phys. Rev. D 81 (2010) 086008 [arXiv:1001.2535] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    D. Persson, Arithmetic and Hyperbolic Structures in String Theory, arXiv:1001.3154 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ConnecticutStorrsU.S.A.
  2. 2.Department of PhysicsNorth Carolina State UniversityRaleighU.S.A.

Personalised recommendations