Skip to main content

Long-lived sleptons at the LHC and a 100 TeV proton collider

A preprint version of the article is available at arXiv.

Abstract

We study the prospects for long-lived charged particle (LLCP) searches at current and future LHC runs and at a 100 TeV pp collider, using Drell-Yan slepton pair production as an example. Because momentum measurements become more challenging for very energetic particles, we carefully treat the expected momentum resolution. At the same time, a novel feature of 100 TeV collisions is the significant energy loss of energetic muons in the calorimeter. We use this to help discriminate between muons and LLCPs. We find that the 14 TeV LHC with an integrated luminosity of 3 ab−1 can probe LLCP slepton masses up to 1.2 TeV, and a 100 TeV pp collider with 3 ab−1 can probe LLCP slepton masses up to 4 TeV, using time-of-flight measurements. These searches will have striking implications for dark matter, with the LHC definitively testing the possibility of slepton-neutralino co-annihilating WIMP dark matter, and with the LHC and future hadron colliders having a strong potential for discovering LLCPs in models with superWIMP dark matter.

References

  1. CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].

  2. ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].

  3. CMS collaboration, Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 325 [arXiv:1502.02522] [INSPIRE].

  4. Y. Gershtein et al., Working group report: new particles, forces and dimensions, arXiv:1311.0299 [INSPIRE].

  5. M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].

    ADS  Article  Google Scholar 

  6. B.S. Acharya, K. BoŻek, C. Pongkitivanichkul and K. Sakurai, Prospects for observing charginos and neutralinos at a 100 TeV proton-proton collider, JHEP 02 (2015) 181 [arXiv:1410.1532] [INSPIRE].

    ADS  Article  Google Scholar 

  7. S. Gori, S. Jung, L.-T. Wang and J.D. Wells, Prospects for electroweakino discovery at a 100 TeV hadron collider, JHEP 12 (2014) 108 [arXiv:1410.6287] [INSPIRE].

    ADS  Article  Google Scholar 

  8. M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].

  9. M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].

  10. J.L. Feng and T. Moroi, Tevatron signatures of longlived charged sleptons in gauge mediated supersymmetry breaking models, Phys. Rev. D 58 (1998) 035001 [hep-ph/9712499] [INSPIRE].

  11. T. Cohen et al., SUSY simplified models at 14, 33 and 100 TeV proton colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].

    ADS  Article  Google Scholar 

  12. J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].

  13. J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].

  14. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  15. J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].

  16. Y. Konishi, S. Ohta, J. Sato, T. Shimomura, K. Sugai and M. Yamanaka, First evidence of the constrained minimal supersymmetric standard model is appearing soon, Phys. Rev. D 89 (2014) 075006 [arXiv:1309.2067] [INSPIRE].

    ADS  Google Scholar 

  17. N. Desai, J. Ellis, F. Luo and J. Marrouche, Closing in on the tip of the CMSSM stau coannihilation strip, Phys. Rev. D 90 (2014) 055031 [arXiv:1404.5061] [INSPIRE].

    ADS  Google Scholar 

  18. J. Heisig and J. Kersten, Production of long-lived staus in the Drell-Yan process, Phys. Rev. D 84 (2011) 115009 [arXiv:1106.0764] [INSPIRE].

    ADS  Google Scholar 

  19. J. Heisig and J. Kersten, Long-lived staus from strong production in a simplified model approach, Phys. Rev. D 86 (2012) 055020 [arXiv:1203.1581] [INSPIRE].

    ADS  Google Scholar 

  20. D.E. Groom, N.V. Mokhov and S.I. Striganov, Muon stopping power and range tables 10 MeV to 100 TeV, Atom. Data Nucl. Data Tabl. 78 (2001) 183.

    ADS  Article  Google Scholar 

  21. J.L. Feng, S. Su and F. Takayama, Supergravity with a gravitino LSP, Phys. Rev. D 70 (2004) 075019 [hep-ph/0404231] [INSPIRE].

  22. J. Bernstein, L.S. Brown and G. Feinberg, The cosmological heavy neutrino problem revisited, Phys. Rev. D 32 (1985) 3261 [INSPIRE].

    ADS  Google Scholar 

  23. R.J. Scherrer and M.S. Turner, On the relic, cosmic abundance of stable weakly interacting massive particles, Phys. Rev. D 33 (1986) 1585 [Erratum ibid. D 34 (1986) 3263] [INSPIRE].

  24. T. Asaka, K. Hamaguchi and K. Suzuki, Cosmological gravitino problem in gauge mediated supersymmetry breaking models, Phys. Lett. B 490 (2000) 136 [hep-ph/0005136] [INSPIRE].

  25. J.L. Feng, S.-f. Su and F. Takayama, SuperWIMP gravitino dark matter from slepton and sneutrino decays, Phys. Rev. D 70 (2004) 063514 [hep-ph/0404198] [INSPIRE].

  26. M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].

    ADS  Google Scholar 

  27. S. Bailly, K. Jedamzik and G. Moultaka, Gravitino dark matter and the cosmic lithium abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [INSPIRE].

    ADS  Google Scholar 

  28. J. Anderson et al., Snowmass energy frontier simulations, arXiv:1309.1057 [INSPIRE].

  29. A. Avetisyan et al., Methods and results for standard model event generation at \( \sqrt{s}=14 \) TeV, 33 TeV and 100 TeV proton colliders (a Snowmass whitepaper), arXiv:1308.1636 [INSPIRE].

  30. A. Avetisyan et al., Snowmass energy frontier simulations using the open science grid (a Snowmass 2013 whitepaper), arXiv:1308.0843 [INSPIRE].

  31. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  32. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  33. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  34. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  35. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

  36. A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].

    ADS  Article  Google Scholar 

  37. Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  38. GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  39. A. Salvucci, Measurement of muon momentum resolution of the ATLAS detector, EPJ Web Conf. 28 (2012) 12039 [arXiv:1201.4704] [INSPIRE].

    Article  Google Scholar 

  40. ATLAS collaboration, Expected performance of the ATLAS experimentDetector, trigger and physics, arXiv:0901.0512 [INSPIRE].

  41. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  42. P. Meade and M. Reece, BRIDGE: branching ratio inquiry/decay generated events, hep-ph/0703031 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sho Iwamoto.

Additional information

ArXiv ePrint: 1505.02996

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, J.L., Iwamoto, S., Shadmi, Y. et al. Long-lived sleptons at the LHC and a 100 TeV proton collider. J. High Energ. Phys. 2015, 1–24 (2015). https://doi.org/10.1007/JHEP12(2015)166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/JHEP12(2015)166

Keywords

  • Supersymmetry Phenomenology