Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Weak gravity strongly constrains large-field axion inflation

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 December 2015
  • Volume 2015, pages 1–41, (2015)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Weak gravity strongly constrains large-field axion inflation
Download PDF
  • Ben Heidenreich1,
  • Matthew Reece1 &
  • Tom Rudelius1 
  • 476 Accesses

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Models of large-field inflation based on axion-like fields with shift symmetries can be simple and natural, and make a promising prediction of detectable primordial gravitational waves. The Weak Gravity Conjecture is known to constrain the simplest case in which a single compact axion descends from a gauge field in an extra dimension. We argue that the Weak Gravity Conjecture also constrains a variety of theories of multiple compact axions including N-flation and some alignment models. We show that other alignment models entail surprising consequences for how the mass spectrum of the theory varies across the axion moduli space, and hence can be excluded if further conjectures hold. In every case that we consider, plausible assumptions lead to field ranges that cannot be parametrically larger than M Pl. Our results are strongly suggestive of a general inconsistency in models of large-field inflation based on compact axions, and possibly of a more general principle forbidding super-Planckian field ranges.

Article PDF

Download to read the full article text

Similar content being viewed by others

Large-field inflation with multiple axions and the weak gravity conjecture

Article Open access 18 February 2016

Fencing in the swampland: quantum gravity constraints on large field inflation

Article Open access 05 October 2015

On axionic field ranges, loopholes and the weak gravity conjecture

Article Open access 05 April 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].

    Article  ADS  Google Scholar 

  2. R. Easther, W.H. Kinney and B.A. Powell, The Lyth bound and the end of inflation, JCAP 08 (2006) 004 [astro-ph/0601276] [INSPIRE].

    Article  ADS  Google Scholar 

  3. D. Baumann and D. Green, A field range bound for general single-field inflation, JCAP 05 (2012) 017 [arXiv:1111.3040] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Antusch and D. Nolde, BICEP2 implications for single-field slow-roll inflation revisited, JCAP 05 (2014) 035 [arXiv:1404.1821] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Bramante, S. Downes, L. Lehman and A. Martin, Last stand of single small field inflation, Phys. Rev. D 90 (2014) 023530 [arXiv:1405.7563] [INSPIRE].

    ADS  Google Scholar 

  6. M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Banks, M. Berkooz, S.H. Shenker, G.W. Moore and P.J. Steinhardt, Modular cosmology, Phys. Rev. D 52 (1995) 3548 [hep-th/9503114] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. N. Arkani-Hamed, H.-C. Cheng, P. Creminelli and L. Randall, Extra natural inflation, Phys. Rev. Lett. 90 (2003) 221302 [hep-th/0301218] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].

    Article  ADS  Google Scholar 

  16. E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

    ADS  Google Scholar 

  17. L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].

    ADS  Google Scholar 

  18. M. Berg, E. Pajer and S. Sjors, Dante’s inferno, Phys. Rev. D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].

    ADS  Google Scholar 

  19. C. Germani and A. Kehagias, UV-protected inflation, Phys. Rev. Lett. 106 (2011) 161302 [arXiv:1012.0853] [INSPIRE].

    Article  ADS  Google Scholar 

  20. N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].

    Article  ADS  Google Scholar 

  21. N. Kaloper and A. Lawrence, Natural chaotic inflation and ultraviolet sensitivity, Phys. Rev. D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].

    ADS  Google Scholar 

  22. C.P. Burgess, M. Cicoli, F. Quevedo and M. Williams, Inflating with large effective fields, JCAP 11 (2014) 045 [arXiv:1404.6236] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. T.C. Bachlechner, M. Dias, J. Frazer and L. McAllister, Chaotic inflation with kinetic alignment of axion fields, Phys. Rev. D 91 (2015) 023520 [arXiv:1404.7496] [INSPIRE].

    ADS  Google Scholar 

  24. C. Csáki, N. Kaloper, J. Serra and J. Terning, Inflation from broken scale invariance, Phys. Rev. Lett. 113 (2014) 161302 [arXiv:1406.5192] [INSPIRE].

    Article  ADS  Google Scholar 

  25. K. Furuuchi and Y. Koyama, Large field inflation models from higher-dimensional gauge theories, JCAP 02 (2015) 031 [arXiv:1407.1951] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Harigaya and M. Ibe, Phase locked inflation — Effectively trans-planckian natural inflation, JHEP 11 (2014) 147 [arXiv:1407.4893] [INSPIRE].

    Article  ADS  Google Scholar 

  27. T. Higaki and F. Takahashi, Axion landscape and natural inflation, Phys. Lett. B 744 (2015) 153 [arXiv:1409.8409] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Shiu, W. Staessens and F. Ye, Large field inflation from axion mixing, JHEP 06 (2015) 026 [arXiv:1503.02965] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. A.R. Liddle, A. Mazumdar and F.E. Schunck, Assisted inflation, Phys. Rev. D 58 (1998) 061301 [astro-ph/9804177] [INSPIRE].

    ADS  Google Scholar 

  30. E.J. Copeland, A. Mazumdar and N.J. Nunes, Generalized assisted inflation, Phys. Rev. D 60 (1999) 083506 [astro-ph/9904309] [INSPIRE].

    ADS  Google Scholar 

  31. A. Mazumdar, S. Panda and A. Perez-Lorenzana, Assisted inflation via tachyon condensation, Nucl. Phys. B 614 (2001) 101 [hep-ph/0107058] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A. Jokinen and A. Mazumdar, Inflation in large-N limit of supersymmetric gauge theories, Phys. Lett. B 597 (2004) 222 [hep-th/0406074] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Ashoorioon, H. Firouzjahi and M.M. Sheikh-Jabbari, M-flation: inflation from matrix valued scalar fields, JCAP 06 (2009) 018 [arXiv:0903.1481] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Ashoorioon and M.M. Sheikh-Jabbari, Gauged M-flation, its UV sensitivity and spectator species, JCAP 06 (2011) 014 [arXiv:1101.0048] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Ashoorioon and M.M. Sheikh-Jabbari, Gauged M-flation after BICEP2, Phys. Lett. B 739 (2014) 391 [arXiv:1405.1685] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP 06 (2003) 001 [hep-th/0303252] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. T. Rudelius, On the possibility of large axion moduli spaces, JCAP 04 (2015) 049 [arXiv:1409.5793] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].

  39. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M.R. Douglas and Z. Lu, Finiteness of volume of moduli spaces, hep-th/0509224 [INSPIRE].

  42. Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. T. Banks, M. Johnson and A. Shomer, A note on gauge theories coupled to gravity, JHEP 09 (2006) 049 [hep-th/0606277] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C. Cheung and G.N. Remmen, Infrared consistency and the weak gravity conjecture, JHEP 12 (2014) 087 [arXiv:1407.7865] [INSPIRE].

    Article  ADS  Google Scholar 

  46. L. Susskind, Trouble for remnants, hep-th/9501106 [INSPIRE].

  47. T.C. Bachlechner, C. Long and L. McAllister, Planckian axions in string theory, arXiv:1412.1093 [INSPIRE].

  48. A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP 09 (2015) 020 [arXiv:1503.00795] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, arXiv:1503.07853 [INSPIRE].

  53. A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp: evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett. B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, arXiv:1504.00659 [INSPIRE].

  55. D. Junghans, Large-field inflation with multiple axions and the weak gravity conjecture, arXiv:1504.03566 [INSPIRE].

  56. B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, arXiv:1509.06374 [INSPIRE].

  57. W.A. Hiscock and L.D. Weems, Evolution of charged evaporating black holes, Phys. Rev. D 41 (1990) 1142 [INSPIRE].

    ADS  Google Scholar 

  58. G. Gibbons, Vacuum polarization and the spontaneous loss of charge by black holes, Commun. Math. Phys. 44 (1975) 245.

    Article  ADS  MathSciNet  Google Scholar 

  59. B.W. Schumacher, Is Bekenstein’s conjecture true for charged black holes?, Phys. Rev. Lett. 54 (1985) 2643 [INSPIRE].

    Article  ADS  Google Scholar 

  60. I.B. Khriplovich, Particle creation by charged black holes, Phys. Rept. 320 (1999) 37 [INSPIRE].

    Article  ADS  Google Scholar 

  61. F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  62. C.-M. Chen, S.P. Kim, I.-C. Lin, J.-R. Sun and M.-F. Wu, Spontaneous pair production in Reissner-Nordstrom black holes, Phys. Rev. D 85 (2012) 124041 [arXiv:1202.3224] [INSPIRE].

    ADS  Google Scholar 

  63. C.-M. Chen, J.-R. Sun, F.-Y. Tang and P.-Y. Tsai, Spinor particle creation in near extremal Reissner-Nordström black holes, Class. Quant. Grav. 32 (2015) 195003 [arXiv:1412.6876] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. T.C. Bachlechner, C. Long, L. McAllister and J. Stout, to appear.

  65. A. de la Fuente, P. Saraswat and R. Sundrum, private communication (2014).

  66. N. Kaloper and A.D. Linde, Cosmology versus holography, Phys. Rev. D 60 (1999) 103509 [hep-th/9904120] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  67. J.P. Conlon, Quantum gravity constraints on inflation, JCAP 09 (2012) 019 [arXiv:1203.5476] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. L. Boubekeur, On the scale of new physics in inflation, arXiv:1312.4768 [INSPIRE].

  69. Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  70. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].

    ADS  Google Scholar 

  71. N. Arkani-Hamed, S. Dubovsky, A. Nicolis and G. Villadoro, Quantum horizons of the standard model landscape, JHEP 06 (2007) 078 [hep-th/0703067] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  73. P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

    Article  ADS  Google Scholar 

  74. R. Contino, A. Pomarol and R. Rattazzi, unpublished work discussed in talks at Xmas10 and Planck 2010 (2010)

  75. B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A naturally light dilaton and a small cosmological constant, Eur. Phys. J. C 74 (2014) 2790 [arXiv:1305.3919] [INSPIRE].

    Article  ADS  Google Scholar 

  76. F. Coradeschi, P. Lodone, D. Pappadopulo, R. Rattazzi and L. Vitale, A naturally light dilaton, JHEP 11 (2013) 057 [arXiv:1306.4601] [INSPIRE].

    Article  ADS  Google Scholar 

  77. A. Nicolis, On super-planckian fields at sub-planckian energies, JHEP 07 (2008) 023 [arXiv:0802.3923] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. Z. Komargodski, private communication (2014).

  79. N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. C.T. Hill, S. Pokorski and J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].

    ADS  Google Scholar 

  81. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  82. C.T. Hill and A.K. Leibovich, Deconstructing 5D QED, Phys. Rev. D 66 (2002) 016006 [hep-ph/0205057] [INSPIRE].

    ADS  Google Scholar 

  83. J.D. Bekenstein, A universal upper bound on the entropy to energy ratio for bounded systems, Phys. Rev. D 23 (1981) 287 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  84. R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  87. H. Casini, Relative entropy and the Bekenstein bound, Class. Quant. Grav. 25 (2008) 205021 [arXiv:0804.2182] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Proof of a quantum bousso bound, Phys. Rev. D 90 (2014) 044002 [arXiv:1404.5635] [INSPIRE].

    ADS  Google Scholar 

  89. R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Entropy on a null surface for interacting quantum field theories and the Bousso bound, Phys. Rev. D 91 (2015) 084030 [arXiv:1406.4545] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  90. G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  91. A.V. Frolov and L. Kofman, Inflation and de Sitter thermodynamics, JCAP 05 (2003) 009 [hep-th/0212327] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Harvard University, Cambridge, MA, 02138, U.S.A.

    Ben Heidenreich, Matthew Reece & Tom Rudelius

Authors
  1. Ben Heidenreich
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Matthew Reece
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Tom Rudelius
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Matthew Reece.

Additional information

ArXiv ePrint: 1506.03447

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidenreich, B., Reece, M. & Rudelius, T. Weak gravity strongly constrains large-field axion inflation. J. High Energ. Phys. 2015, 1–41 (2015). https://doi.org/10.1007/JHEP12(2015)108

Download citation

  • Received: 16 October 2015

  • Accepted: 08 December 2015

  • Published: 16 December 2015

  • Issue Date: December 2015

  • DOI: https://doi.org/10.1007/JHEP12(2015)108

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Compactification and String Models
  • Cosmology of Theories beyond the SM
  • Models of Quantum Gravity
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature